Hu Bing, Zhou Weiting, Ma Xunfu
Department of Applied Mathematics, School of Mathematical Sciences, Zhejiang University of Technology, Hangzhou, 310023 China.
School of Physics, Zhejiang University of Technology, Hangzhou, 310023 China.
Cogn Neurodyn. 2024 Dec;18(6):3775-3790. doi: 10.1007/s11571-024-10161-6. Epub 2024 Aug 17.
The output of the basal ganglia to the corticothalamic system plays an important role in regulating absence seizures. Inspired by experiments, we systematically study the crucial roles of two newly identified direct inhibitory striatal-cortical projections that project from the striatal D1 nucleus (SD1) and striatal D2 nucleus (SD2) to the cerebral cortex, in controlling absence seizures. Through computational simulation, we observe that typical 2-4 Hz spike and wave discharges (SWDs) can be induced through the pathological mechanism of cortical circuits, and both enhancing the inhibitory coupling weight on the striatal-cortical projections and improving the discharge activation level of striatal populations can effectively control typical SWDs. Furthermore, typical SWDs can be suppressed by appropriately adjusting several input projections directly related to the striatum, through regulating the activation level of striatal populations. Interestingly, several indirect striatum-related basal ganglia projections also have significant effects on the inhibition of typical SWDs, through the direct inhibitory striatal-cortical projections. Both the unidirectional control mode and bidirectional control mode for typical SWDs exist in our modified model. Importantly, the enhancement of coupling strengths on inhibitory striatal-cortical projections is beneficial for suppressing SWDs and may play a decisive regulatory role in the formation of control modes. Therefore, our study suggests that striatum may be potential effective targets for the treatment of absence seizures, through two newly identified direct inhibitory striatal-cortical projections. Interestingly, we find that external stimuli simultaneously targeting the striatum and another basal ganglia nucleus have a better control effect on SWDs than targeting a single basal ganglia nucleus, and the obtained results provide testable hypotheses for future experiments.
基底神经节向皮质丘脑系统的输出在调节失神发作中起重要作用。受实验启发,我们系统地研究了两条新发现的从纹状体D1核(SD1)和纹状体D2核(SD2)投射到大脑皮质的直接抑制性纹状体 - 皮质投射在控制失神发作中的关键作用。通过计算模拟,我们观察到典型的2 - 4Hz棘慢波放电(SWD)可通过皮质回路的病理机制诱发,增强纹状体 - 皮质投射上的抑制性耦合权重以及提高纹状体群体的放电激活水平均可有效控制典型的SWD。此外,通过调节纹状体群体的激活水平,适当调整与纹状体直接相关的几个输入投射可抑制典型的SWD。有趣的是,一些与纹状体间接相关的基底神经节投射也通过直接抑制性纹状体 - 皮质投射对典型SWD的抑制有显著影响。在我们修改后的模型中存在典型SWD的单向控制模式和双向控制模式。重要的是,增强抑制性纹状体 - 皮质投射上的耦合强度有利于抑制SWD,并且可能在控制模式的形成中起决定性调节作用。因此,我们的研究表明,通过两条新发现的直接抑制性纹状体 - 皮质投射,纹状体可能是治疗失神发作的潜在有效靶点。有趣的是,我们发现同时靶向纹状体和另一个基底神经节核的外部刺激对SWD的控制效果比靶向单个基底神经节核更好,所得结果为未来实验提供了可检验的假设。