Suppr超能文献

STGAT-CS:基于时空图注意力网络的基于运动想象的脑机接口通道选择

STGAT-CS: spatio-temporal-graph attention network based channel selection for MI-based BCI.

作者信息

Meng Ming, Xu Bin, Ma Yuliang, Gao Yunyuan, Luo Zhizeng

机构信息

School of Automation, Hangzhou Dianzi University, Hangzhou, 310018 Zhejiang China.

出版信息

Cogn Neurodyn. 2024 Dec;18(6):3663-3678. doi: 10.1007/s11571-024-10154-5. Epub 2024 Jul 21.

Abstract

Brain-computer interface (BCI) based on the motor imagery paradigm typically utilizes multi-channel electroencephalogram (EEG) to ensure accurate capture of physiological phenomena. However, excessive channels often contain redundant information and noise, which can significantly degrade BCI performance. Although there have been numerous studies on EEG channel selection, most of them require manual feature extraction, and the extracted features are difficult to fully represent the effective information of EEG signals. In this paper, we propose a spatio-temporal-graph attention network for channel selection (STGAT-CS) of EEG signals. We consider the EEG channels and their inter-channel connectivity as a graph and treat the channel selection problem as a node classification problem on the graph. We leverage the multi-head attention mechanism of graph attention network to dynamically capture topological relationships between nodes and update node features accordingly. Additionally, we introduce one-dimensional convolution to automatically extract temporal features from each channel in the original EEG signal, thereby obtaining more comprehensive spatiotemporal characteristics. In the classification tasks of the BCI Competition III Dataset IVa and BCI Competition IV Dataset I, STGAT-CS achieved average accuracies of 91.5% and 85.4% respectively, demonstrating the effectiveness of the proposed method.

摘要

基于运动想象范式的脑机接口(BCI)通常利用多通道脑电图(EEG)来确保准确捕捉生理现象。然而,过多的通道往往包含冗余信息和噪声,这会显著降低BCI的性能。尽管已有众多关于EEG通道选择的研究,但其中大多数都需要手动特征提取,且提取的特征难以充分表征EEG信号的有效信息。在本文中,我们提出了一种用于EEG信号通道选择的时空图注意力网络(STGAT-CS)。我们将EEG通道及其通道间的连通性视为一个图,并将通道选择问题当作图上的节点分类问题。我们利用图注意力网络的多头注意力机制来动态捕捉节点之间的拓扑关系,并据此更新节点特征。此外,我们引入一维卷积以自动从原始EEG信号的每个通道中提取时间特征,从而获得更全面的时空特征。在BCI竞赛III数据集IVa和BCI竞赛IV数据集I的分类任务中,STGAT-CS分别实现了91.5%和85.4%的平均准确率,证明了所提方法的有效性。

相似文献

本文引用的文献

3
EEG emotion recognition using improved graph neural network with channel selection.基于通道选择的改进图神经网络的脑电图情感识别
Comput Methods Programs Biomed. 2023 Apr;231:107380. doi: 10.1016/j.cmpb.2023.107380. Epub 2023 Feb 1.
7
A survey of brain network analysis by electroencephalographic signals.基于脑电图信号的脑网络分析综述
Cogn Neurodyn. 2022 Feb;16(1):17-41. doi: 10.1007/s11571-021-09689-8. Epub 2021 Jun 14.
10
30+ years of P300 brain-computer interfaces.P300 脑机接口 30 多年的发展历程。
Psychophysiology. 2020 Jul;57(7):e13569. doi: 10.1111/psyp.13569. Epub 2020 Apr 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验