Meng Ming, Xu Bin, Ma Yuliang, Gao Yunyuan, Luo Zhizeng
School of Automation, Hangzhou Dianzi University, Hangzhou, 310018 Zhejiang China.
Cogn Neurodyn. 2024 Dec;18(6):3663-3678. doi: 10.1007/s11571-024-10154-5. Epub 2024 Jul 21.
Brain-computer interface (BCI) based on the motor imagery paradigm typically utilizes multi-channel electroencephalogram (EEG) to ensure accurate capture of physiological phenomena. However, excessive channels often contain redundant information and noise, which can significantly degrade BCI performance. Although there have been numerous studies on EEG channel selection, most of them require manual feature extraction, and the extracted features are difficult to fully represent the effective information of EEG signals. In this paper, we propose a spatio-temporal-graph attention network for channel selection (STGAT-CS) of EEG signals. We consider the EEG channels and their inter-channel connectivity as a graph and treat the channel selection problem as a node classification problem on the graph. We leverage the multi-head attention mechanism of graph attention network to dynamically capture topological relationships between nodes and update node features accordingly. Additionally, we introduce one-dimensional convolution to automatically extract temporal features from each channel in the original EEG signal, thereby obtaining more comprehensive spatiotemporal characteristics. In the classification tasks of the BCI Competition III Dataset IVa and BCI Competition IV Dataset I, STGAT-CS achieved average accuracies of 91.5% and 85.4% respectively, demonstrating the effectiveness of the proposed method.
基于运动想象范式的脑机接口(BCI)通常利用多通道脑电图(EEG)来确保准确捕捉生理现象。然而,过多的通道往往包含冗余信息和噪声,这会显著降低BCI的性能。尽管已有众多关于EEG通道选择的研究,但其中大多数都需要手动特征提取,且提取的特征难以充分表征EEG信号的有效信息。在本文中,我们提出了一种用于EEG信号通道选择的时空图注意力网络(STGAT-CS)。我们将EEG通道及其通道间的连通性视为一个图,并将通道选择问题当作图上的节点分类问题。我们利用图注意力网络的多头注意力机制来动态捕捉节点之间的拓扑关系,并据此更新节点特征。此外,我们引入一维卷积以自动从原始EEG信号的每个通道中提取时间特征,从而获得更全面的时空特征。在BCI竞赛III数据集IVa和BCI竞赛IV数据集I的分类任务中,STGAT-CS分别实现了91.5%和85.4%的平均准确率,证明了所提方法的有效性。