Ma Shuangxiu Max, Zou Changlong, Bakshi Bhavik R, Lin Li-Chiang
William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States.
School of Sustainability, Arizona State University, Tempe, Arizona 85281, United States.
Ind Eng Chem Res. 2024 Dec 4;63(50):21907-21917. doi: 10.1021/acs.iecr.4c03488. eCollection 2024 Dec 18.
Polystyrene (PS) presents a significant environmental challenge due to its durability and resistance to degradation. A major issue in addressing this challenge is optimizing the pyrolysis process to selectively convert PS into valuable products, such as styrene, while minimizing unwanted byproducts. Existing studies on PS pyrolysis have primarily focused on general reaction yields and kinetics, with limited molecular-level insight into how zeolites can enhance product selectivity. This study addresses these gaps by investigating zeolite-assisted PS pyrolysis using a combination of reactive molecular dynamics (MD) simulations and Monte Carlo (MC) simulations. We specifically assess how zeolite structure and adsorption properties influence the pyrolysis product distribution, identifying optimal zeolites that enhance styrene yield. Our findings reveal that PS degradation occurs primarily through a chain-breaking mechanism without long-chain re-formation and that zeolites can significantly improve the selectivity and efficiency of the pyrolysis process by selectively adsorbing styrene. This work highlights the potential of zeolite-enhanced pyrolysis as a pathway for sustainable plastic recycling, advancing chemical recycling technologies to tackle plastic waste.
由于聚苯乙烯(PS)的耐久性和抗降解性,它对环境构成了重大挑战。应对这一挑战的一个主要问题是优化热解过程,以选择性地将PS转化为有价值的产品,如苯乙烯,同时尽量减少不需要的副产品。现有的关于PS热解的研究主要集中在一般反应产率和动力学上,对沸石如何提高产物选择性的分子水平洞察有限。本研究通过结合反应分子动力学(MD)模拟和蒙特卡罗(MC)模拟来研究沸石辅助的PS热解,填补了这些空白。我们具体评估了沸石结构和吸附性能如何影响热解产物分布,确定了能提高苯乙烯产率的最佳沸石。我们的研究结果表明,PS降解主要通过断链机制发生,不会发生长链重新形成,并且沸石可以通过选择性吸附苯乙烯显著提高热解过程的选择性和效率。这项工作突出了沸石增强热解作为可持续塑料回收途径的潜力,推动了化学回收技术以解决塑料废物问题。