Suppr超能文献

评估医院患者安全事件报告自动分类的主动学习策略

Evaluating Active Learning Strategies for Automated Classification of Patient Safety Event Reports in Hospitals.

作者信息

Islam Shehnaz, Alfred Myrtede, Wilson Dulaney, Cohen Eldan

机构信息

Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada.

Public Health Sciences, Medical University of South Carolina, Charleston, USA.

出版信息

Proc Hum Factors Ergon Soc Annu Meet. 2024 Sep;68(1):465-472. doi: 10.1177/10711813241260676. Epub 2024 Aug 13.

Abstract

Patient safety event (PSE) reports, which document incidents that compromise patient safety, are fundamental for improving healthcare quality. Accurate classification of these reports is crucial for analyzing trends, guiding interventions, and supporting organizational learning. However, this process is labor-intensive due to the high volume and complex taxonomy of reports. Previous work has shown that machine learning (ML) can automate PSE report classification; however, its success depends on large manually-labeled datasets. This study leverages Active Learning (AL) strategies with human expertise to streamline PSE-report labeling. We utilize pool-based AL sampling to selectively query reports for human annotation, developing a robust dataset for training ML classifiers. Our experiments demonstrate that AL significantly outperforms random sampling in accuracy across various text representations, reducing the need for labeled samples by 24% to 69%. Based on these findings, we suggest that incorporating AL strategies into PSE-report labeling can effectively reduce manual workload while maintaining high classification accuracy.

摘要

患者安全事件(PSE)报告记录了危及患者安全的事件,是提高医疗质量的基础。对这些报告进行准确分类对于分析趋势、指导干预措施以及支持组织学习至关重要。然而,由于报告数量众多且分类复杂,这一过程需要耗费大量人力。先前的研究表明,机器学习(ML)可以实现PSE报告分类的自动化;然而,其成功依赖于大量人工标注的数据集。本研究利用主动学习(AL)策略并结合人类专业知识,以简化PSE报告的标注工作。我们采用基于池的AL采样方法,有选择地查询报告以供人工标注,从而构建一个强大的数据集用于训练ML分类器。我们的实验表明,在各种文本表示形式下,AL在准确性方面显著优于随机采样,将所需标注样本数量减少了24%至69%。基于这些发现,我们建议将AL策略纳入PSE报告标注工作中,能够在保持高分类准确性的同时有效减少人工工作量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2f7/11655274/1fd23ab7f8f5/10.1177_10711813241260676-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验