Suppr超能文献

MMETHANE:用于从微生物组成和代谢组学数据预测宿主状态的可解释人工智能。

MMETHANE: interpretable AI for predicting host status from microbial composition and metabolomics data.

作者信息

Dawkins Jennifer J, Gerber Georg K

出版信息

bioRxiv. 2024 Dec 14:2024.12.13.628441. doi: 10.1101/2024.12.13.628441.

Abstract

Metabolite production, consumption, and exchange are intimately involved with host health and disease, as well as being key drivers of host-microbiome interactions. Despite the increasing prevalence of datasets that jointly measure microbiome composition and metabolites, computational tools for linking these data to the status of the host remain limited. To address these limitations, we developed MMETHANE, an open-source software package that implements a purpose-built deep learning model for predicting host status from paired microbial sequencing and metabolomic data. MMETHANE incorporates prior biological knowledge, including phylogenetic and chemical relationships, and is intrinsically interpretable, outputting an English-language set of rules that explains its decisions. Using a compendium of six datasets with paired microbial composition and metabolomics measurements, we showed that MMETHANE always performed at least on par with existing methods, including blackbox machine learning techniques, and outperformed other methods on >80% of the datasets evaluated. We additionally demonstrated through two cases studies analyzing inflammatory bowel disease gut microbiome datasets that MMETHANE uncovers biologically meaningful links between microbes, metabolites, and disease status.

摘要

代谢物的产生、消耗和交换与宿主健康和疾病密切相关,也是宿主与微生物群相互作用的关键驱动因素。尽管联合测量微生物群组成和代谢物的数据集越来越普遍,但将这些数据与宿主状态联系起来的计算工具仍然有限。为了解决这些局限性,我们开发了MMETHANE,这是一个开源软件包,它实现了一个专门构建的深度学习模型,用于从配对的微生物测序和代谢组学数据预测宿主状态。MMETHANE纳入了先前的生物学知识,包括系统发育和化学关系,并且具有内在的可解释性,输出一组英语规则来解释其决策。使用包含配对微生物组成和代谢组学测量的六个数据集的汇编,我们表明MMETHANE的表现始终至少与现有方法相当,包括黑箱机器学习技术,并且在超过80%的评估数据集中优于其他方法。我们还通过两项分析炎症性肠病肠道微生物群数据集的案例研究证明,MMETHANE揭示了微生物、代谢物和疾病状态之间具有生物学意义的联系。

相似文献

10
Prognosis of adults and children following a first unprovoked seizure.首次无诱因发作后成人和儿童的预后。
Cochrane Database Syst Rev. 2023 Jan 23;1(1):CD013847. doi: 10.1002/14651858.CD013847.pub2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验