Suppr超能文献

含杂质超临界致密相CO₂长距离输送管道中水合物形成的预测

Prediction of Hydrate Formation in Long-Distance Transportation Pipeline for Supercritical-Dense Phase CO Containing Impurities.

作者信息

Tang Chunli, Chen Bing, Qi Wenjiao, Zhao Qiong, Wang Xiangzeng

机构信息

School of Mechanical Engineering, Xi'an Shiyou University, Xi'an, Shaanxi Province 710065, P. R. China.

Shaanxi Yanchang Petroleum (Group) Co., Ltd., Xi'an, Shaanxi Province 710000, P. R. China.

出版信息

ACS Omega. 2024 Dec 2;9(50):49728-49738. doi: 10.1021/acsomega.4c08122. eCollection 2024 Dec 17.

Abstract

Supercritical-dense phase CO pipeline transportation has been proven to have excellent economic and safety benefits for long-distance CO transportation in large-scale. Hydrates are easily generated in the high-pressure and low-temperature sections, resulting in blockage, so it is necessary to build the prediction model for hydrate formation in the long-distance CO pipeline transportation. In the prediction model of hydrate formation of our work, the phase equilibrium was determined by the Chen-Guo model, and the lateral growth of hydrate was calculated by the comprehensive growth model, and the hydrate growth was estimated by analogy with the condensation process. Subsequently, the prediction model for hydrate volume in the CO pipeline was established considering the process of hydrate growth and water droplet distribution. The effects of thermodynamic conditions, impurities, and operating conditions on the hydrate formation were analyzed. The impurities can expand the temperature and pressure ranges for hydrate generation. The increase in the moisture content, the increase in the pressure, the decrease in the temperature, or the increase in the fluid velocity could increase the volume of hydrates in the pipeline. After running for 10 h, the hydrates volume in the pipeline with the moisture molar fraction of 0.05% is over 10 times that with the moisture molar fraction of 0.005%. In addition, by using the proposed hydrate formation prediction model, the hydrate formation in a supercritical-dense phase CO long-distance pipeline was predicted, and a suggested cleaning cycle was achieved. This study can guide the operation of CO long-distance transportation pipelines.

摘要

超临界致密相CO管道输送已被证明对于大规模长距离CO输送具有出色的经济和安全效益。在高压和低温段容易生成水合物,导致堵塞,因此有必要建立长距离CO管道输送中水合物生成的预测模型。在我们工作的水合物生成预测模型中,相平衡由陈-郭模型确定,水合物的横向生长由综合生长模型计算,水合物生长通过与冷凝过程类比估算。随后,考虑水合物生长过程和水滴分布,建立了CO管道中水合物体积的预测模型。分析了热力学条件、杂质和操作条件对水合物生成的影响。杂质会扩大水合物生成的温度和压力范围。含水量增加、压力升高、温度降低或流体速度增加都会使管道中水合物的体积增加。运行10小时后,水分摩尔分数为0.05%的管道中的水合物体积是水分摩尔分数为0.005%的管道中的10倍以上。此外,通过使用所提出的水合物生成预测模型,对超临界致密相CO长距离管道中的水合物生成进行了预测,并得出了建议的清洗周期。本研究可为CO长距离输送管道的运行提供指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac99/11656397/0932b2fcf589/ao4c08122_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验