Pramanik Avijit, Kolawole Olorunsola Praise, Kundu Sanchita, Gates Kaelin, Rai Shivangee, Shukla Manoj K, Ray Paresh Chandra
Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States.
US Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, Mississippi 39180-6199, United States.
ACS Omega. 2024 Dec 8;9(50):49452-49462. doi: 10.1021/acsomega.4c07159. eCollection 2024 Dec 17.
The short-chain (C to C) and ultrashort-chain (C to C) per- and polyfluoroalkyl substances (PFAS) are bioaccumulative, carcinogenic to humans, and harder to remove using current technologies, which are often detected in drinking and environmental water samples. Herein, we report the development of nonafluorobutanesulfonyl (NFBS) and polyethylene-imine (PEI)-conjugated FeO magnetic nanoparticle-based magnetic nanoadsorbents and demonstrated that the novel adsorbent has the capability for highly efficient removal of six different short- and ultrashort-chain PFAS from drinking and environmental water samples. Reported experimental data indicates that by capitalizing the cooperative hydrophobic, fluorophilic, and electrostatic interaction processes, NFBS-PEI-conjugated magnetic nanoadsorbents can remove ∼100% short-chain perfluorobutanesulfonic acid within 30 min from the water sample with a maximum absorption capacity of ∼234 mg g. Furthermore, to show how cooperative interactions are necessary for effective capturing of ultrashort and short PFAS, a comparative study has been performed using PEI-attached magnetic nanoadsorbents without NFBS and acid-functionalized magnetic nanoadsorbents without PEI and NFBS. Reported data show that the ultrashort-chain perfluoropropanesulfonic acid capture efficiency is the highest for the NFBS-PEI-attached nanoadsorbent ( ∼ 187 mg g) in comparison to the PEI-attached nanoadsorbent ( ∼ 119 mg g) or carboxylic acid-attached nanoadsorbent ( ∼ 52 mg g). In addition, the role of cooperative molecular interactions in highly efficient removal of ultrashort-chain PFAS has been analyzed in detail. Moreover, reported data demonstrate that nanoadsorbents can be used for effective removal of short-chain PFAS (<92%) and ultrashort-chain PFAS (<70%) simultaneously from reservoir, lake, tape, and river water samples within 30 min, which shows the potential of nanoadsorbents for real-life PFAS remediation.
短链(C至C)和超短链(C至C)全氟和多氟烷基物质(PFAS)具有生物累积性,对人类致癌,并且使用当前技术更难去除,它们经常在饮用水和环境水样中被检测到。在此,我们报告了基于九氟丁烷磺酰基(NFBS)和聚乙烯亚胺(PEI)共轭的FeO磁性纳米颗粒的磁性纳米吸附剂的开发,并证明了这种新型吸附剂具有从饮用水和环境水样中高效去除六种不同短链和超短链PFAS的能力。报告的实验数据表明,通过利用协同的疏水、亲氟和静电相互作用过程,NFBS-PEI共轭磁性纳米吸附剂可以在30分钟内从水样中去除约100%的短链全氟丁烷磺酸,最大吸附容量约为234 mg g。此外,为了说明协同相互作用对于有效捕获超短链和短链PFAS是如何必要的,我们使用了没有NFBS的PEI附着磁性纳米吸附剂和没有PEI和NFBS的酸官能化磁性纳米吸附剂进行了一项比较研究。报告的数据表明,与PEI附着的纳米吸附剂(约119 mg g)或羧酸附着的纳米吸附剂(约52 mg g)相比,NFBS-PEI附着的纳米吸附剂对超短链全氟丙烷磺酸的捕获效率最高(约187 mg g)。此外,还详细分析了协同分子相互作用在高效去除超短链PFAS中的作用。而且,报告的数据表明,纳米吸附剂可以在30分钟内同时有效地从水库、湖泊、自来水和河水样中去除短链PFAS(<92%)和超短链PFAS(<70%),这显示了纳米吸附剂在实际PFAS修复中的潜力。