Suppr超能文献

Data-driven material modeling based on the Constitutive Relation Error.

作者信息

Ladevèze Pierre, Chamoin Ludovic

机构信息

CentraleSupélec, ENS Paris-Saclay, CNRS, LMPS-Laboratoire de Mécanique Paris-Saclay, Université Paris-Saclay, 4 Avenue des Sciences, 91190 Gif-sur-Yvette, France.

Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris, France.

出版信息

Adv Model Simul Eng Sci. 2024;11(1):23. doi: 10.1186/s40323-024-00279-x. Epub 2024 Dec 18.

Abstract

Prior to any numerical development, the paper objective is to answer first to a fundamental question: what is the mathematical form of the most general data-driven constitutive model for stable materials, taking maximum account of knowledge from physics and materials science? Here we restrict ourselves to elasto-(visco-)plastic materials under the small displacement assumption. The experimental data consists of full-field measurements from a family of tested mechanical structures. In this framework, a general data-driven approach is proposed to learn the constitutive model (in terms of thermodynamic potentials) from data. A key element that defines the proposed data-driven approach is a tool: the Constitutive Relation Error (CRE); the data-driven model is then the minimizer of the CRE. A notable aspect of this procedure is that it leads to quasi-explicit formulations of the optimal constitutive model. Eventually, a modified Constitutive Relation Error is introduced to take measurement noise into account.

摘要

相似文献

1
Data-driven material modeling based on the Constitutive Relation Error.
Adv Model Simul Eng Sci. 2024;11(1):23. doi: 10.1186/s40323-024-00279-x. Epub 2024 Dec 18.
3
A two-layer elasto-visco-plastic rheological model for the material parameter identification of bone tissue.
Biomech Model Mechanobiol. 2020 Dec;19(6):2149-2162. doi: 10.1007/s10237-020-01329-0. Epub 2020 May 6.
4
A GENERAL RETURN-MAPPING FRAMEWORK FOR FRACTIONAL VISCO-ELASTO-PLASTICITY.
Fractal Fract. 2022 Dec;6(12). doi: 10.3390/fractalfract6120715. Epub 2022 Dec 1.
7
Prediction of Structural Performance of Vinyl Ester Polymer Concrete Using FEM Elasto-Plastic Model.
Materials (Basel). 2020 Sep 11;13(18):4034. doi: 10.3390/ma13184034.
8
Data-Driven Elasticity Imaging Using Cartesian Neural Network Constitutive Models and the Autoprogressive Method.
IEEE Trans Med Imaging. 2019 May;38(5):1150-1160. doi: 10.1109/TMI.2018.2879495. Epub 2018 Nov 5.
10
Data-Oriented Constitutive Modeling of Plasticity in Metals.
Materials (Basel). 2020 Apr 1;13(7):1600. doi: 10.3390/ma13071600.

本文引用的文献

1
Large Scale Parameter Estimation Problems in Frequency-Domain Elastodynamics Using an Error in Constitutive Equation Functional.
Comput Methods Appl Mech Eng. 2013 Jan 1;253:60-72. doi: 10.1016/j.cma.2012.08.023. Epub 2012 Sep 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验