IEEE Trans Med Imaging. 2019 May;38(5):1150-1160. doi: 10.1109/TMI.2018.2879495. Epub 2018 Nov 5.
Quasi-static elasticity imaging techniques rely on model-based mathematical inverse methods to estimate mechanical parameters from force-displacement measurements. These techniques introduce simplifying assumptions that preclude exploration of unknown mechanical properties with potential diagnostic value. We previously reported a data-driven approach to elasticity imaging using artificial neural networks (NNs) that circumvents limitations associated with model-based inverse methods. NN constitutive models can learn stress-strain behavior from force-displacement measurements using the autoprogressive (AutoP) method without prior assumptions of the underlying constitutive model. However, information about internal structure was required. We invented Cartesian NN constitutive models (CaNNCMs) that learn the spatial variations of material properties. We are presenting the first implementation of CaNNCMs trained with AutoP to develop data-driven models of 2-D linear-elastic materials. Both simulated and experimental force-displacement data were used as input to AutoP to show that CaNNCMs are able to model both continuous and discrete material property distributions with no prior information of internal object structure. Furthermore, we demonstrate that CaNNCMs are robust to measurement noise and can reconstruct reasonably accurate Young's modulus images from a sparse sampling of measurement data. CaNNCMs are an important step toward clinical use of data-driven elasticity imaging using AutoP.
准静态弹性成像技术依赖于基于模型的数学反演方法,从力-位移测量中估计力学参数。这些技术引入了简化假设,排除了对具有潜在诊断价值的未知力学性质的探索。我们之前报道了一种使用人工神经网络(NN)的弹性成像数据驱动方法,该方法规避了基于模型的反演方法的局限性。NN 本构模型可以使用自动渐进(AutoP)方法从力-位移测量中学习应力-应变行为,而无需对基础本构模型做出先验假设。但是,需要关于内部结构的信息。我们发明了笛卡尔 NN 本构模型(CaNNCMs),可以学习材料性能的空间变化。我们首次提出了使用 AutoP 训练 CaNNCM 的实现方法,以开发二维线弹性材料的基于数据驱动的模型。模拟和实验力-位移数据都被用作 AutoP 的输入,以证明 CaNNCM 能够对连续和离散的材料性能分布进行建模,而无需内部物体结构的先验信息。此外,我们证明了 CaNNCM 对测量噪声具有鲁棒性,可以从稀疏的测量数据采样中重建出相当准确的杨氏模量图像。CaNNCM 是使用 AutoP 进行基于数据驱动的弹性成像临床应用的重要一步。