Suppr超能文献

基于笛卡尔神经网络本构模型和自累进方法的数据驱动弹性成像。

Data-Driven Elasticity Imaging Using Cartesian Neural Network Constitutive Models and the Autoprogressive Method.

出版信息

IEEE Trans Med Imaging. 2019 May;38(5):1150-1160. doi: 10.1109/TMI.2018.2879495. Epub 2018 Nov 5.

Abstract

Quasi-static elasticity imaging techniques rely on model-based mathematical inverse methods to estimate mechanical parameters from force-displacement measurements. These techniques introduce simplifying assumptions that preclude exploration of unknown mechanical properties with potential diagnostic value. We previously reported a data-driven approach to elasticity imaging using artificial neural networks (NNs) that circumvents limitations associated with model-based inverse methods. NN constitutive models can learn stress-strain behavior from force-displacement measurements using the autoprogressive (AutoP) method without prior assumptions of the underlying constitutive model. However, information about internal structure was required. We invented Cartesian NN constitutive models (CaNNCMs) that learn the spatial variations of material properties. We are presenting the first implementation of CaNNCMs trained with AutoP to develop data-driven models of 2-D linear-elastic materials. Both simulated and experimental force-displacement data were used as input to AutoP to show that CaNNCMs are able to model both continuous and discrete material property distributions with no prior information of internal object structure. Furthermore, we demonstrate that CaNNCMs are robust to measurement noise and can reconstruct reasonably accurate Young's modulus images from a sparse sampling of measurement data. CaNNCMs are an important step toward clinical use of data-driven elasticity imaging using AutoP.

摘要

准静态弹性成像技术依赖于基于模型的数学反演方法,从力-位移测量中估计力学参数。这些技术引入了简化假设,排除了对具有潜在诊断价值的未知力学性质的探索。我们之前报道了一种使用人工神经网络(NN)的弹性成像数据驱动方法,该方法规避了基于模型的反演方法的局限性。NN 本构模型可以使用自动渐进(AutoP)方法从力-位移测量中学习应力-应变行为,而无需对基础本构模型做出先验假设。但是,需要关于内部结构的信息。我们发明了笛卡尔 NN 本构模型(CaNNCMs),可以学习材料性能的空间变化。我们首次提出了使用 AutoP 训练 CaNNCM 的实现方法,以开发二维线弹性材料的基于数据驱动的模型。模拟和实验力-位移数据都被用作 AutoP 的输入,以证明 CaNNCM 能够对连续和离散的材料性能分布进行建模,而无需内部物体结构的先验信息。此外,我们证明了 CaNNCM 对测量噪声具有鲁棒性,可以从稀疏的测量数据采样中重建出相当准确的杨氏模量图像。CaNNCM 是使用 AutoP 进行基于数据驱动的弹性成像临床应用的重要一步。

相似文献

1
Data-Driven Elasticity Imaging Using Cartesian Neural Network Constitutive Models and the Autoprogressive Method.
IEEE Trans Med Imaging. 2019 May;38(5):1150-1160. doi: 10.1109/TMI.2018.2879495. Epub 2018 Nov 5.
2
Physics-guided machine learning for 3-D quantitative quasi-static elasticity imaging.
Phys Med Biol. 2020 Mar 20;65(6):065011. doi: 10.1088/1361-6560/ab7505.
3
A data-driven approach to characterizing nonlinear elastic behavior of soft materials.
J Mech Behav Biomed Mater. 2022 Jun;130:105178. doi: 10.1016/j.jmbbm.2022.105178. Epub 2022 Mar 25.
4
An information-based machine learning approach to elasticity imaging.
Biomech Model Mechanobiol. 2017 Jun;16(3):805-822. doi: 10.1007/s10237-016-0854-6. Epub 2016 Nov 18.
5
A regularization-free elasticity reconstruction method for ultrasound elastography with freehand scan.
Biomed Eng Online. 2014 Sep 7;13:132. doi: 10.1186/1475-925X-13-132.
6
A regularization-free Young's modulus reconstruction algorithm for ultrasound elasticity imaging.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:1132-5. doi: 10.1109/EMBC.2013.6609705.
7
Elasticity imaging using physics-informed neural networks: Spatial discovery of elastic modulus and Poisson's ratio.
Acta Biomater. 2023 Jan 1;155:400-409. doi: 10.1016/j.actbio.2022.11.024. Epub 2022 Nov 17.
8
Shear modulus decomposition algorithm in magnetic resonance elastography.
IEEE Trans Med Imaging. 2009 Oct;28(10):1526-33. doi: 10.1109/TMI.2009.2019823.
9
Transversely isotropic elasticity imaging of cancellous bone.
J Biomech Eng. 2011 Jun;133(6):061002. doi: 10.1115/1.4004231.
10
Reconstruction of elasticity: a stochastic model-based approach in ultrasound elastography.
Biomed Eng Online. 2013 Aug 10;12:79. doi: 10.1186/1475-925X-12-79.

引用本文的文献

1
A data-driven approach to characterizing nonlinear elastic behavior of soft materials.
J Mech Behav Biomed Mater. 2022 Jun;130:105178. doi: 10.1016/j.jmbbm.2022.105178. Epub 2022 Mar 25.

本文引用的文献

1
Automated In Vivo Sub-Hertz Analysis of Viscoelasticity (SAVE) for Evaluation of Breast Lesions.
IEEE Trans Biomed Eng. 2018 Oct;65(10):2237-2247. doi: 10.1109/TBME.2017.2787679. Epub 2017 Dec 27.
2
Global Time-Delay Estimation in Ultrasound Elastography.
IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Oct;64(10):1625-1636. doi: 10.1109/TUFFC.2017.2717933. Epub 2017 Jun 21.
3
An information-based machine learning approach to elasticity imaging.
Biomech Model Mechanobiol. 2017 Jun;16(3):805-822. doi: 10.1007/s10237-016-0854-6. Epub 2016 Nov 18.
4
Indentation Measurements to Validate Dynamic Elasticity Imaging Methods.
Ultrason Imaging. 2016 Sep;38(5):332-45. doi: 10.1177/0161734615605046. Epub 2015 Sep 16.
5
Quantitative diagnostics of soft tissue through viscoelastic characterization using time-based instrumented palpation.
J Mech Behav Biomed Mater. 2015 Jan;41:149-60. doi: 10.1016/j.jmbbm.2014.09.027. Epub 2014 Oct 31.
7
NiftySim: A GPU-based nonlinear finite element package for simulation of soft tissue biomechanics.
Int J Comput Assist Radiol Surg. 2015 Jul;10(7):1077-95. doi: 10.1007/s11548-014-1118-5. Epub 2014 Sep 21.
8
Algorithms for quantitative quasi-static elasticity imaging using force data.
Int J Numer Method Biomed Eng. 2014 Dec;30(12):1421-36. doi: 10.1002/cnm.2665. Epub 2014 Aug 28.
9
Nonlinear characterization of breast cancer using multi-compression 3D ultrasound elastography in vivo.
Ultrasonics. 2013 Jul;53(5):979-91. doi: 10.1016/j.ultras.2013.01.005. Epub 2013 Jan 23.
10
Linear and nonlinear elastic modulus imaging: an application to breast cancer diagnosis.
IEEE Trans Med Imaging. 2012 Aug;31(8):1628-37. doi: 10.1109/TMI.2012.2201497. Epub 2012 May 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验