Quah Timothy, Delaney Kris T, Fredrickson Glenn H
Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA.
Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA.
J Chem Phys. 2024 Dec 28;161(24). doi: 10.1063/5.0241609.
Field-theoretic simulations are numerical methods for polymer field theory, which include fluctuation corrections beyond the mean-field level, successfully capturing various mesoscopic phenomena. Most field-theoretic simulations of polymeric fluids use the auxiliary field (AF) theory framework, which employs Hubbard-Stratonovich transformations for the particle-to-field conversion. Nonetheless, the Hubbard-Stratonovich transformation imposes significant limitations on the functional form of the non-bonded potentials. Removing this restriction on the non-bonded potentials will enable studies of a wide range of systems that require multi-body or more complex potentials. An alternative representation is the hybrid density-explicit auxiliary field theory (DE-AF), which retains both a density field and a conjugate auxiliary field for each species. While the DE-AF representation is not new, density-explicit field-theoretic simulations have yet to be developed. A major challenge is preserving the real and non-negative nature of the density field during stochastic evolution. To address this, we introduce positivity-preserving schemes that enable the first stable and efficient density-explicit field-theoretic simulations (DE-AF FTS). By applying the new method to a simple fluid, we find thermodynamically correct results at high densities, but the algorithm fails in the dilute regime. Nonetheless, DE-AF FTS is shown to be broadly applicable to dense fluid systems including a simple fluid with a three-body non-bonded potential, a homopolymer solution, and a diblock copolymer melt.
场论模拟是用于聚合物场论的数值方法,其中包括超出平均场水平的涨落修正,能够成功捕捉各种介观现象。大多数聚合物流体的场论模拟使用辅助场(AF)理论框架,该框架采用哈伯德-斯特拉托诺维奇变换进行粒子到场的转换。然而,哈伯德-斯特拉托诺维奇变换对非键合势的函数形式施加了重大限制。消除对非键合势的这种限制将能够研究需要多体或更复杂势的广泛系统。一种替代表示是混合密度显式辅助场理论(DE-AF),它为每个物种保留一个密度场和一个共轭辅助场。虽然DE-AF表示并不新颖,但密度显式场论模拟尚未得到发展。一个主要挑战是在随机演化过程中保持密度场的实部和非负性质。为了解决这个问题,我们引入了保正方案,从而实现了首个稳定且高效的密度显式场论模拟(DE-AF FTS)。通过将新方法应用于一种简单流体,我们在高密度下得到了热力学正确的结果,但该算法在稀溶液区域失效。尽管如此,DE-AF FTS被证明广泛适用于稠密流体系统,包括具有三体非键合势的简单流体、均聚物溶液和二嵌段共聚物熔体。