Tan Jing, Huang Rui, Li Kunpeng, Yan Xu, Guo Lin, Guo Zaiping, Zhang Wenchao, Chai Liyuan
School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Central South University, Changsha, 410083, China.
Angew Chem Int Ed Engl. 2025 Mar 17;64(12):e202422313. doi: 10.1002/anie.202422313. Epub 2025 Jan 21.
The recycling of critical metals from spent lithium-ion batteries represents a significant step towards meeting the enhancing resource requirements in the new energy industry. Nevertheless, achieving effective leaching of metals from the stable metal-oxygen (MO) structure of spent ternary cathodes and separation of metal products simultaneously still remained a huge challenge towards industrial applications. Herein, a competitive coordination strategy was proposed to design a novel deep eutectic solvent (DESs), which improved both leaching and selective metal recycling capacity even at high solid-liquid ratio (1 : 10). The results demonstrated that the number of hydrogen bonds in designed ternary DESs was 16.5 % higher compared to those in the binary DESs, resulting in efficient reaction kinetics to break the metals-oxygen bond. More importantly, the competing-ligand (p-toluenesulfonic acid) could preferentially enter into the first nanostructure sheath and reduce the proportion of solvated oxalic acid (OxA) from 28.36 % to 17.76 % within the nanostructure, which enable OxA molecules to enhance the coordination interaction with metal for precipitating NiCO ⋅ 2HO product (~95.7 % purity) from spent cathodes. This work achieved impressive profitability ($16.05 per kg feedstock) and effectively reduction of GHG emissions during the recycling process, making it applicable to critical sustainability initiatives.
从废旧锂离子电池中回收关键金属是朝着满足新能源行业不断增长的资源需求迈出的重要一步。然而,要从废旧三元阴极的稳定金属 - 氧(MO)结构中有效浸出金属并同时分离金属产品,在工业应用方面仍然是一个巨大的挑战。在此,提出了一种竞争性配位策略来设计一种新型的深共晶溶剂(DESs),即使在高固液比(1∶10)的情况下,该溶剂也能提高浸出和选择性金属回收能力。结果表明,所设计的三元DESs中的氢键数量比二元DESs中的氢键数量高16.5%,从而产生了打破金属 - 氧键的高效反应动力学。更重要的是,竞争配体(对甲苯磺酸)可以优先进入第一纳米结构鞘层,并将纳米结构内溶剂化草酸(OxA)的比例从28.36%降低到17.76%,这使得OxA分子能够增强与金属的配位相互作用,从而从废旧阴极中沉淀出纯度约为95.7%的NiCO₂·2H₂O产物。这项工作在回收过程中实现了可观的盈利能力(每千克原料16.05美元)并有效减少了温室气体排放,使其适用于关键的可持续发展倡议。