Moise Gabriel, Fernández Saleta, Joll Kit, Vaganov Mikhail V, García Fátima, Timmel Christiane R, Peña Diego, Ardavan Arzhang
Centre for Advanced Electron Spin Resonance, The Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, United Kingdom.
Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares, Universidade de Santiago de Compostela, C/Jenaro de la Fuente s/n (esquina Avda. Mestre Mateo), Campus Vida, Santiago de Compostela, 15705, Spain.
Chemphyschem. 2025 Mar 15;26(6):e202400707. doi: 10.1002/cphc.202400707. Epub 2025 Jan 14.
With a view towards the development of molecular spintronics, non-linear optics, and qubits, a great amount of research effort aims to establish the factors which govern the spin classification of diradicals. Electron spin resonance (ESR) is an indispensable tool for such research. However, in some cases, the mere presence of an ESR spectrum is insufficient to ascertain that the presumed diradical is indeed a triplet state. In a comparative case study of a Chichibabin diradical and a monoradical analogue, we show how the signals from different spin states present in liquid solutions of these species may be disentangled. Ultimately, the correct spin classification depends on ESR techniques which probe the spin quantum number directly. In this work, electron nuclear double resonance experiments reveal that the nuclei provide a clear experimental probe of the electronic spin configuration.
为了发展分子自旋电子学、非线性光学和量子比特,大量的研究工作致力于确定控制双自由基自旋分类的因素。电子自旋共振(ESR)是此类研究不可或缺的工具。然而,在某些情况下,仅仅存在ESR光谱不足以确定假定的双自由基确实处于三重态。在对奇奇巴宾双自由基和单自由基类似物的比较案例研究中,我们展示了如何解开这些物种的液体溶液中存在的不同自旋态的信号。最终,正确的自旋分类取决于直接探测自旋量子数的ESR技术。在这项工作中,电子核双共振实验表明,原子核为电子自旋构型提供了清晰的实验探针。