Suppr超能文献

分子棱柱状结构的拓扑工程中的量子单元。

Quantum units from the topological engineering of molecular graphenoids.

机构信息

Department of Materials, University of Oxford, 16 Parks Road, OX1 3PH Oxford, UK.

Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01069 Dresden, Germany.

出版信息

Science. 2019 Nov 29;366(6469):1107-1110. doi: 10.1126/science.aay7203.

Abstract

Robustly coherent spin centers that can be integrated into devices are a key ingredient of quantum technologies. Vacancies in semiconductors are excellent candidates, and theory predicts that defects in conjugated carbon materials should also display long coherence times. However, the quantum performance of carbon nanostructures has remained stunted by an inability to alter the sp-carbon lattice with atomic precision. Here, we demonstrate that topological tailoring leads to superior quantum performance in molecular graphene nanostructures. We unravel the decoherence mechanisms, quantify nuclear and environmental effects, and observe spin-coherence times that outclass most nanomaterials. These results validate long-standing assumptions on the coherent behavior of topological defects in graphene and open up the possibility of introducing controlled quantum-coherent centers in the upcoming generation of carbon-based optoelectronic, electronic, and bioactive systems.

摘要

稳健相干的自旋中心可以集成到设备中,是量子技术的关键组成部分。半导体中的空位是极好的候选者,理论预测共轭碳材料中的缺陷也应该显示出长的相干时间。然而,由于无法以原子精度改变 sp-碳晶格,碳纳米结构的量子性能一直受到阻碍。在这里,我们证明了拓扑剪裁导致分子石墨烯纳米结构具有优异的量子性能。我们揭示了退相干机制,量化了核和环境效应,并观察到的自旋相干时间超过了大多数纳米材料。这些结果验证了在石墨烯中拓扑缺陷的相干行为的长期假设,并为在即将到来的新一代基于碳的光电、电子和生物活性系统中引入可控的量子相干中心开辟了可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验