Kristin Philipp Jule, Fumino Koichi, Appelhagen Andreas, Paschek Dietmar, Ludwig Ralf
Universität Rostock, Institut für Chemie, Abteilung für Physikalische Chemie, Albert-Einstein-Str. 27, 18059, Rostock, Germany.
Department LL&M, University of Rostock, Albert-Einstein-Str. 25, 18059, Rostock, Germany.
Chemphyschem. 2025 Mar 3;26(5):e202400991. doi: 10.1002/cphc.202400991. Epub 2025 Jan 9.
Glyme-based electrolyte solutions provide new concepts for developing suitable lithium-ion batteries. The so-called solvate ionic liquids (SILs) are promising electrolytes. They are most efficient in equimolar mixtures of lithium bis(trifluoromethanesulfonyl)imide ([Li][NTf]) and glyme, wherein the [Li] cation is supposedly fully solvated by glyme molecules. Here, we performed far (FIR) and mid (MIR) infrared spectroscopy for probing the solvation and local structures around the [Li] ions. In particular, we studied the competition between the triglyme molecule (G3) and the salt anions for the coordination to the lithium cations with increasing [Li][NTf] concentration. The formation of nano structures in the [Li][NTf]:G3 mixtures is discussed in terms of contact (CIP) and solvent-separated (SIP) ion pairs in solution. At low salt concentrations, the [Li] cations are solvated by two triglyme molecules resulting in SIPs only. With increasing salt concentration, [Li] is predominantly solvated by one triglyme molecule as [Li(triglyme)] but still remains in contact to one of the four oxygen atoms of the [NTf] anion. Molecular dynamics (MD) simulations provide a molecular picture of the [Li][NTf]:G3 mixtures that supports the conclusions drawn from the experimental findings.
基于甘醇二甲醚的电解质溶液为开发合适的锂离子电池提供了新的概念。所谓的溶剂化离子液体(SILs)是很有前景的电解质。它们在双(三氟甲磺酰)亚胺锂([Li][NTf])和甘醇二甲醚的等摩尔混合物中效率最高,其中[Li]阳离子据推测被甘醇二甲醚分子完全溶剂化。在此,我们进行了远红外(FIR)和中红外(MIR)光谱分析,以探测[Li]离子周围的溶剂化和局部结构。特别是,我们研究了随着[Li][NTf]浓度的增加,三甘醇二甲醚分子(G3)和盐阴离子在与锂阳离子配位方面的竞争。根据溶液中的接触离子对(CIP)和溶剂分隔离子对(SIP)讨论了[Li][NTf]:G3混合物中纳米结构的形成。在低盐浓度下,[Li]阳离子被两个三甘醇二甲醚分子溶剂化,仅产生SIPs。随着盐浓度的增加,[Li]主要被一个三甘醇二甲醚分子溶剂化为[Li(三甘醇二甲醚)],但仍与[NTf]阴离子的四个氧原子之一保持接触。分子动力学(MD)模拟提供了[Li][NTf]:G3混合物的分子图像,支持了从实验结果得出的结论。