Kemmizaki Yuta, Katayama Yu, Tsutsumi Hiromori, Ueno Kazuhide
Department of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University Tokiwadai Ube 755-8611 Japan
Department of Chemistry and Biotechnology, Yokohama National University 79-5 Tokiwadai, Hodogaya-ku Yokohama 240-8501 Japan
RSC Adv. 2020 Jan 24;10(7):4129-4136. doi: 10.1039/c9ra10149g. eCollection 2020 Jan 22.
Solvate ionic liquids (SILs), comprising long-lived, Li solvate cations and counter anions, serve as highly Li-ion-conductive and non-flammable electrolytes for use in lithium secondary batteries. In this work, we synthesized a series of novel redox-active glyme(oligoether)-Li salt-based SILs, consisting of a symmetric ([Li(G3)]) or asymmetric ([Li(G3Bu)]) triglyme-Li salt complex and redox-active tetrahalogenoferrate ([FeX] (X = Br, ClBr, Cl)), for use as the catholyte in semi-liquid lithium secondary batteries. The successful formation of stable molten complexes of [Li(G3/G3Bu)][FeX] was confirmed by Raman spectroscopy and thermogravimetry. The melting point ( ) depended on both the molecular weights of the complex anions and the structures of the complex cations. [Li(G3)][FeCl] comprised complex cations with a symmetric structure, and the smallest complex anions showed the lowest of 28.2 °C. The redox properties of the [FeX]/[FeX] couple strongly suggested the suitability of [Li(G3/G3Bu)][FeX] as a catholyte. The discharge capacities of semi-liquid lithium secondary batteries utilizing the [Li(G3/G3Bu)][FeX] catholyte depended on the structure of the SILs, and the cell with [Li(G3)][FeCl] showed the highest capacity with relatively good capacity retention. This study confirmed the feasibility of the glyme-based redox-active SILs as catholytes for scalable redox-flow type batteries.
溶剂化离子液体(SILs)由长寿命的锂溶剂化阳离子和抗衡阴离子组成,是用于锂二次电池的高锂离子传导性和不可燃电解质。在本工作中,我们合成了一系列基于新型氧化还原活性甘醇二甲醚(低聚醚)锂盐的SILs,其由对称的([Li(G3)])或不对称的([Li(G3Bu)])三甘醇二甲醚锂盐络合物以及氧化还原活性四卤代铁酸盐([FeX] (X = Br、ClBr、Cl))组成,用作半液体锂二次电池的阴极电解液。通过拉曼光谱和热重分析证实了[Li(G3/G3Bu)][FeX]稳定熔融络合物的成功形成。熔点( )取决于络合阴离子的分子量和络合阳离子的结构。[Li(G3)][FeCl]包含具有对称结构的络合阳离子,最小的络合阴离子显示出最低的熔点,为28.2 °C。[FeX]/[FeX] 电对的氧化还原性质有力地表明[Li(G3/G3Bu)][FeX]适合作为阴极电解液。使用[Li(G3/G3Bu)][FeX]阴极电解液的半液体锂二次电池的放电容量取决于SILs的结构,具有[Li(G3)][FeCl]的电池显示出最高的容量以及相对良好的容量保持率。本研究证实了基于甘醇二甲醚的氧化还原活性SILs作为可扩展氧化还原液流型电池阴极电解液的可行性。