Suppr超能文献

利用机器学习从抗体滴度数据预测感染的登革热血清型。

Predicting the infecting dengue serotype from antibody titre data using machine learning.

作者信息

Cracknell Daniels Bethan, Buddhari Darunee, Hunsawong Taweewun, Iamsirithaworn Sopon, Farmer Aaron R, Cummings Derek A T, Anderson Kathryn B, Dorigatti Ilaria

机构信息

MRC Centre for Global Infectious Disease Analysis and the Abdul Latif Jameel Institute for Disease and Emergency Analytics, School of Public Health, Imperial College London, London, United Kingdom.

Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.

出版信息

PLoS Comput Biol. 2024 Dec 23;20(12):e1012188. doi: 10.1371/journal.pcbi.1012188. eCollection 2024 Dec.

Abstract

The development of a safe and efficacious vaccine that provides immunity against all four dengue virus serotypes is a priority, and a significant challenge for vaccine development has been defining and measuring serotype-specific outcomes and correlates of protection. The plaque reduction neutralisation test (PRNT) is the gold standard assay for measuring serotype-specific antibodies, but this test cannot differentiate homotypic and heterotypic antibodies and characterising the infection history is challenging. To address this, we present an analysis of pre- and post-infection antibody titres measured using the PRNT, collected from a prospective cohort of Thai children. We applied four machine learning classifiers and multinomial logistic regression to the titre data to predict the infecting serotype. The models were validated against the true infecting serotype, identified using RT-PCR. Model performance was calculated using 100 bootstrap samples of the train and out-of-sample test sets. Our analysis showed that, on average, the greatest change in titre was against the infecting serotype. However, in 53.4% (109/204) of the subjects, the highest titre change did not correspond to the infecting serotype, including in 34.3% (11/35) of dengue-naïve individuals (although 8/11 of these seronegative individuals were seropositive to Japanese encephalitis virus prior to their infection). The highest post-infection titres of seropositive cases were more likely to match the serotype of the highest pre-infection titre than the infecting serotype, consistent with antigenic seniority or cross-reactive boosting of pre-infection titres. Despite these challenges, the best performing machine learning algorithm achieved 76.3% (95% CI 57.9-89.5%) accuracy on the out-of-sample test set in predicting the infecting serotype from PRNT data. Incorporating additional spatiotemporal data improved accuracy to 80.6% (95% CI 63.2-94.7%), while using only post-infection titres as predictor variables yielded an accuracy of 71.7% (95% CI 57.9-84.2%). These results show that machine learning classifiers can be used to overcome challenges in interpreting PRNT titres, making them useful tools in investigating dengue immune dynamics, infection history and identifying serotype-specific correlates of protection, which in turn can support the evaluation of clinical trial endpoints and vaccine development.

摘要

开发一种安全有效的、能提供针对所有四种登革病毒血清型免疫力的疫苗是当务之急,而疫苗开发面临的一个重大挑战是定义和衡量血清型特异性结果以及保护的相关因素。蚀斑减少中和试验(PRNT)是测量血清型特异性抗体的金标准检测方法,但该检测无法区分同型和异型抗体,而且确定感染史具有挑战性。为了解决这个问题,我们对从泰国儿童前瞻性队列中收集的、使用PRNT测量的感染前和感染后抗体滴度进行了分析。我们将四种机器学习分类器和多项逻辑回归应用于滴度数据,以预测感染的血清型。这些模型针对使用逆转录聚合酶链反应(RT-PCR)确定的真正感染血清型进行了验证。模型性能使用训练集和样本外测试集的100个自助抽样样本进行计算。我们的分析表明,平均而言,滴度变化最大的是针对感染的血清型。然而,在53.4%(109/204)的受试者中,滴度变化最高的并不对应于感染的血清型,包括34.3%(11/35)的登革热初发个体(尽管这些血清阴性个体中有8/11在感染前对日本脑炎病毒呈血清阳性)。血清阳性病例感染后的最高滴度更有可能与感染前最高滴度的血清型匹配,而不是与感染的血清型匹配,这与抗原优势或感染前滴度的交叉反应增强一致。尽管存在这些挑战,但表现最佳的机器学习算法在样本外测试集中根据PRNT数据预测感染血清型时的准确率达到了76.3%(95%置信区间57.9 - 89.5%)。纳入额外的时空数据可将准确率提高到80.6%(95%置信区间63.2 - 94.7%),而仅将感染后滴度用作预测变量时的准确率为71.7%(95%置信区间57.9 - 84.2%)。这些结果表明,机器学习分类器可用于克服解释PRNT滴度方面的挑战,使其成为研究登革热免疫动力学、感染史以及确定血清型特异性保护相关因素的有用工具,进而可支持临床试验终点评估和疫苗开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1565/11706371/32abce372c8c/pcbi.1012188.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验