Suppr超能文献

Design and Fabrication of a Patch Antenna for 5G Wireless Communications from a Low-Permittivity LiAlSiO-Based Ceramic.

作者信息

Xiong Siyu, Zhu Xiaowei, Zhu Guobin, Chen Deqin, Cui Hongbo, Liu Laijun, Li Chunchun

机构信息

Guangxi Universities Key Laboratory of Non-ferrous Metal Oxide Electronic Functional Materials and Devices, College of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China.

Guangxi Key Laboratory of Embedded Technology and Intelligent System, College of Information Science and Engineering, Guilin University of Technology, Guilin 541004, China.

出版信息

ACS Appl Mater Interfaces. 2025 Jan 8;17(1):1576-1585. doi: 10.1021/acsami.4c17300. Epub 2024 Dec 23.

Abstract

A microwave dielectric ceramic based on lithium aluminum silicate (LiAlSiO) with ultralow permittivity was synthesized using the traditional solid-state reaction technique, and its dielectric characteristics at microwave frequencies are presented. The nominal LiAlSiO ceramic exhibited a relative permittivity of 3.95. To enhance the material properties, LiAlSiO- wt % BO microwave dielectric ceramics were fabricated by incorporating a low-melting-point sintering aid (BO), achieving a relative density exceeding 94%. The resultant ceramics exhibited a relative permittivity (ε) ranging from 3.95 to 4.42, a microwave quality factor ( × ) between 24,720 and 28,990 GHz, and a resonant frequency temperature coefficient (τ) varying from -45.9 to -20.6 ppm/°C. Additionally, the introduction of BO broadened the sintering temperature window and effectively lowered the optimal sintering temperature from 1400 to 1200 °C. Furthermore, LiAlSiO ceramics demonstrated a near-zero coefficient of thermal expansion (CTE) of 1.44 ppm/°C, which is advantageous for applications requiring high thermal stability. Based on LiAlSiO-2.0 wt % BO ceramics with ε = 4.42, × = 28,990 GHz, and τ = -20.6 ppm/°C, a microstrip patch antenna was designed and fabricated. Testing of the antenna revealed exceptional performance, including a center frequency of 4.98 GHz, a bandwidth of 280 MHz (-10 dB), and a total efficiency reaching up to 93.7%. These findings underscore the promising potential of this material in advanced microwave and wireless communication applications.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验