Schuetze Katherine B, Stratton Matthew S, Bagchi Rushita A, Hobby Alexander R H, Felisbino Marina B, Rubino Marcello, Toni Lee S, Reges Caroline, Cavasin Maria A, McMahan Rachel H, Alexanian Michael, Vagnozzi Ronald J, McKinsey Timothy A
Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States.
Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States.
Am J Physiol Heart Circ Physiol. 2025 Feb 1;328(2):H294-H309. doi: 10.1152/ajpheart.00438.2024. Epub 2024 Dec 23.
Bromodomain and extraterminal domain (BET) proteins, including BRD4, bind acetylated chromatin and coactivate gene transcription. A BET inhibitor, JQ1, prevents and reverses pathological cardiac remodeling in preclinical models of heart failure. However, the underlying cellular mechanisms by which JQ1 improves cardiac structure and function remain poorly defined. Here, we demonstrate that BRD4 knockdown reduced expression of genes encoding CC chemokines in cardiac fibroblasts, suggesting a role for this epigenetic reader in controlling fibroblast-immune cell cross talk. Consistent with this, JQ1 dramatically suppressed recruitment of monocytes to the heart in response to stress. Normal mouse hearts were found to have approximately equivalent numbers of major histocompatibility complex (MHC-II) and MHC-II resident macrophages, whereas MHC-II macrophages predominated following JQ1 treatment. Single-cell RNA-seq data confirmed that JQ1 treatment or BRD4 knockout in CX3CR1 cells reduced MHC-II gene expression in cardiac macrophages, and studies with cultured macrophages further illustrated a cell autonomous role for BET proteins in controlling the MHC-II axis. Bulk RNA-seq analysis demonstrated that JQ1 blocked pro-inflammatory macrophage gene expression through a mechanism that likely involves repression of NF-κB signaling. JQ1 treatment reduced cardiac infarct size in mice subjected to ischemia/reperfusion. Our findings illustrate that BET inhibition affords a powerful pharmacological approach to manipulate monocyte-derived and resident macrophages in the heart. Such an approach has the potential to enhance the reparative phenotype of macrophages to promote wound healing and limit infarct expansion following myocardial ischemia. BRD4 inhibition blocks stress-induced recruitment of pro-inflammatory monocytes to the heart. BRD4 inhibition reprograms resident cardiac macrophages toward a reparative phenotype marked by reduced NF-κB signaling and diminished MHC-II expression. BRD4 inhibition reduces infarct size in an acute model of ischemia/reperfusion injury in mice.
含溴结构域和额外末端结构域(BET)蛋白,包括BRD4,可结合乙酰化染色质并协同激活基因转录。一种BET抑制剂JQ1可预防并逆转心力衰竭临床前模型中的病理性心脏重塑。然而,JQ1改善心脏结构和功能的潜在细胞机制仍不清楚。在此,我们证明敲低BRD4可降低心脏成纤维细胞中编码CC趋化因子的基因表达,提示这种表观遗传阅读器在控制成纤维细胞与免疫细胞相互作用中发挥作用。与此一致的是,JQ1可显著抑制应激反应时单核细胞向心脏的募集。正常小鼠心脏中主要组织相容性复合体(MHC-II)阳性和MHC-II阴性巨噬细胞数量大致相等,而JQ1处理后MHC-II阴性巨噬细胞占主导。单细胞RNA测序数据证实,JQ1处理或CX3CR1细胞中BRD4基因敲除可降低心脏巨噬细胞中MHC-II基因表达,对培养巨噬细胞的研究进一步说明了BET蛋白在控制MHC-II轴方面的细胞自主作用。批量RNA测序分析表明,JQ1通过一种可能涉及抑制NF-κB信号传导的机制阻断促炎性巨噬细胞基因表达。JQ1处理可减小缺血/再灌注小鼠的心脏梗死面积。我们研究结果表明,抑制BET可为操控心脏中单核细胞来源的巨噬细胞和驻留巨噬细胞提供一种有效的药理学方法。这种方法有可能增强巨噬细胞的修复表型,以促进伤口愈合并限制心肌缺血后的梗死扩展。抑制BRD4可阻断应激诱导的促炎性单核细胞向心脏的募集。抑制BRD4可将驻留心脏巨噬细胞重编程为以NF-κB信号传导减弱和MHC-II表达降低为特征的修复表型。抑制BRD4可减小小鼠急性缺血/再灌注损伤模型中的梗死面积。