Sharmah Bhaben, Afzal Nazim Uddin, Loying Rikraj, Roy Arup, Kalita Jatin, Das Joydeep, Manna Prasenjit
Center for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India.
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
ACS Appl Bio Mater. 2025 Jan 20;8(1):475-487. doi: 10.1021/acsabm.4c01426. Epub 2024 Dec 24.
Glucose-dependent insulin delivery systems have been recognized as a promising approach for controlling blood sugar levels in individuals with diabetes mellitus (DM). Recently, titanium dioxide nanoparticles have garnered huge attention in scientific research for their small size and effective drug delivery capabilities. In this study, we developed alizarin (AL)-capped phenylboronic acid (PBA)-functionalized titanium dioxide nanoparticles (TiO) for glucose-sensitive insulin delivery (TiO-PBA-INS-AL) aiming to manage both blood sugar levels and its associated organ pathology in DM. The synthesized nanoparticles demonstrated favorable loading capacity as well as high insulin encapsulation efficiency. Initial studies demonstrated glucose-responsive insulin release from TiO-PBA-INS-AL in a cell-free environment upon exposure to different glucose concentrations. Notably, in vitro experiments revealed that insulin release from TiO-PBA-INS-AL was more effective in muscle cells (primary glucose storage cells) compared to lung cells when subjected to different glucose concentrations (5.5-25 mM), indicating a glucose-sensitive intracellular insulin delivery mechanism. Furthermore, treatment with TiO-PBA-INS-AL significantly enhanced GLUT4 translocation and glucose utilization in muscle cells treated with sodium palmitate (PA, 0.75 mM), compared to treatments with TiO or insulin alone. In diabetic animal models, a single oral dose of TiO-PBA-INS-AL maintained normoglycemia for up to 12 h, indicating a significant improvement over subcutaneous or oral insulin treatment. Oral administration of TiO-PBA-INS-AL also increased insulin bioavailability in both serum and muscle tissue compared to other administration methods. Besides, TiO-PBA-INS-AL treatment showed no toxicity against both in vitro and in vivo models. Taken together, this nanocarrier-based drug delivery system mimics the natural regulation of insulin secretion in a noninvasive manner, enhancing patient adherence, reducing the risk of hyperglycemia, and improving diabetes management.
葡萄糖依赖性胰岛素递送系统已被认为是控制糖尿病(DM)患者血糖水平的一种有前景的方法。最近,二氧化钛纳米颗粒因其尺寸小和有效的药物递送能力而在科学研究中备受关注。在本研究中,我们开发了茜素(AL)封端的苯硼酸(PBA)功能化二氧化钛纳米颗粒(TiO)用于葡萄糖敏感型胰岛素递送(TiO-PBA-INS-AL),旨在控制DM患者的血糖水平及其相关器官病变。合成的纳米颗粒表现出良好的负载能力以及高胰岛素包封效率。初步研究表明,在无细胞环境中,暴露于不同葡萄糖浓度时,TiO-PBA-INS-AL可实现葡萄糖响应性胰岛素释放。值得注意的是,体外实验表明,在不同葡萄糖浓度(5.5-25 mM)下,与肺细胞相比,TiO-PBA-INS-AL在肌肉细胞(主要的葡萄糖储存细胞)中的胰岛素释放更有效,这表明存在一种葡萄糖敏感的细胞内胰岛素递送机制。此外,与单独使用TiO或胰岛素处理相比,用TiO-PBA-INS-AL处理可显著增强棕榈酸钠(PA,0.75 mM)处理的肌肉细胞中GLUT4易位和葡萄糖利用。在糖尿病动物模型中,单次口服剂量的TiO-PBA-INS-AL可维持正常血糖水平长达12小时,表明与皮下或口服胰岛素治疗相比有显著改善。与其他给药方法相比,口服TiO-PBA-INS-AL还可提高血清和肌肉组织中的胰岛素生物利用度。此外,TiO-PBA-INS-AL处理对体外和体内模型均无毒性。综上所述,这种基于纳米载体的药物递送系统以非侵入性方式模拟胰岛素分泌的自然调节,增强患者依从性,降低高血糖风险,并改善糖尿病管理。