Austin Lana M, Amos J Nevil, Robledo-Ruiz Diana A, Zhou Jessica W, Clarke Rohan H, Pavlova Alexandra, Sunnucks Paul
School of Biological Sciences, Monash University, Clayton, Victoria, Australia.
Department of Energy Environment and Climate Action, Arthur Rylah Institute, Heidelberg, Victoria, Australia.
Mol Ecol. 2025 Jan;34(2):e17612. doi: 10.1111/mec.17612. Epub 2024 Dec 24.
Biochemical and evolutionary interactions between mitochondrial and nuclear genomes ('mitonuclear interactions') are proposed to underpin fundamental aspects of biology including evolution of sexual reproduction, adaptation and speciation. We investigated the role of pre-mating isolation in maintaining functional mitonuclear interactions in wild populations bearing diverged, putatively co-adapted mitonuclear genotypes. Two lineages of eastern yellow robin Eopsaltria australis-putatively climate-adapted to 'inland' and 'coastal' climates-differ by ~7% of mitogenome nucleotides, whereas nuclear genome differences are concentrated into a sex-linked region enriched with mitochondrial functions. Female-specific selection and male-mediated gene flow across the hybrid zone where the lineages coexist and interbreed can explain this pattern. It remains unknown whether lineage divergence is driven by intrinsic incompatibilities (particularly in females; Haldane's rule), extrinsic selection, both, or other drivers. We tested whether lineage divergence could be facilitated by non-random mate-pairing with respect to partners' mitolineage and/or mitonuclear genes encoded by the Z sex-chromosome, which differ between the lineages. We used field-, Z-linked- and mitolineage data from two locations where lineages hybridise to test whether females mate disproportionately with (1) males of their own mitolineage and/or bearing similar Z-linked variation, as might be expected if hybrids experience intrinsic incompatibilities, or (2) putatively locally-adapted males, as might be expected under environmental selection. Comparing field observations with simulations provided no evidence of non-random mating, thus drivers of observed population genetic patterns are consistent with reduced female gene flow likely acting post-mating. Future tests of female-biased mortality at different life stages and habitat selection may clarify mechanisms of selection.
线粒体与核基因组之间的生化和进化相互作用(“线粒体-核相互作用”)被认为是生物学基本方面的基础,包括有性生殖的进化、适应和物种形成。我们研究了交配前隔离在维持具有不同的、假定共同适应的线粒体-核基因型的野生种群中功能性线粒体-核相互作用方面的作用。东部黄鸲(Eopsaltria australis)的两个谱系——假定在气候上适应“内陆”和“沿海”气候——其线粒体基因组核苷酸差异约为7%,而核基因组差异集中在一个富含线粒体功能的性连锁区域。雌性特异性选择以及雄性介导的基因流穿过两个谱系共存并杂交的杂交区域,可以解释这种模式。谱系分化是由内在不相容性(特别是在雌性中;霍尔丹法则)、外在选择、两者共同作用还是其他驱动因素导致的,目前尚不清楚。我们测试了谱系分化是否可以通过与伴侣的线粒体谱系和/或由Z性染色体编码的线粒体-核基因进行非随机配对来促进,这些基因在两个谱系之间存在差异。我们使用了来自两个谱系杂交地点的野外、Z连锁和线粒体谱系数据,以测试雌性是否不成比例地与以下两种雄性交配:(1)与自己线粒体谱系相同和/或携带相似Z连锁变异的雄性,这可能是杂种经历内在不相容性时所预期的;(2)假定在当地适应的雄性,这可能是环境选择下所预期的。将野外观察结果与模拟结果进行比较,没有发现非随机交配的证据,因此观察到的种群遗传模式的驱动因素与可能在交配后起作用的雌性基因流减少是一致的。未来对不同生命阶段雌性偏向性死亡率和栖息地选择的测试可能会阐明选择机制。