Olenik Jaka, Shvalya Vasyl, Modic Martina, Vengust Damjan, Cvelbar Uroš, Walsh James L
York Plasma Institute, School of Physics, Engineering and Technology, University of York, York YO10 5DD, U.K.
Department for Gaseous Electronics F6, Jozef Stefan Institute, 1000 Ljubljana, Slovenia.
ACS Sens. 2025 Jan 24;10(1):387-397. doi: 10.1021/acssensors.4c02651. Epub 2024 Dec 24.
Nanogold is an emerging material for enhancing surface-enhanced Raman scattering (SERS), which enables the detection of hazardous analytes at trace levels. This study presents a simple, single-step plasma synthesis method to control the size and yield of Au nanoparticles by using plasma-liquid redox chemistry. The pin-based argon plasma reduces the Au precursor in under 5 min, synthesizing Au spherical particles ranging from ∼20 nm at 0.025 mM to ∼90 nm at 1.0 mM, in addition to plate-like particles occurring at concentrations of 0.25-1.0 mM. The enhanced SERS responses correlated with the UV-vis absorption and reflectance profiles, which can be attributed to synergistic plasmonic hotspots created by the sphere-sphere, plate-sphere, and plate-plate nanogold interactions. This nanogold mixture, combined with gold-plated CPU grid pin arrays, facilitated the detection of trace explosives, including aromatic (TNT, TNB, and TNP) and aliphatic (RDX, PETN, and HMX) compounds. We demonstrate that stabler aliphatic analytes, associated with lower vapor pressure (10-10 atm), exhibit smaller signal fluctuations (RSD ∼ 6-10%) compared to their more volatile (10 atm) aromatic (RSD ∼ 12-17%) counterparts at similar analyte concentrations. The calculated limit of detection (LoD) was found to be ∼2-6 nM and ∼600-900 pM for aromatic and aliphatic explosives, respectively. Finally, we show that the poorer performance of aromatic explosives under the same sensing conditions affects SERS-PCA separation, which can then be improved either by a machine learning approach (PCA with k-NN classification) or by consideration of a specific NO symmetric stretching fingerprint range.
纳米金是一种用于增强表面增强拉曼散射(SERS)的新兴材料,它能够检测痕量水平的有害分析物。本研究提出了一种简单的单步等离子体合成方法,通过利用等离子体-液体氧化还原化学来控制金纳米颗粒的尺寸和产率。基于针的氩等离子体在不到5分钟的时间内还原金前驱体,合成了尺寸范围从0.025 mM时约20 nm到1.0 mM时约90 nm的金球形颗粒,此外在0.25 - 1.0 mM浓度下还会出现板状颗粒。增强的SERS响应与紫外-可见吸收和反射光谱相关,这可归因于由球-球、板-球和板-板纳米金相互作用产生的协同等离子体热点。这种纳米金混合物与镀金的CPU网格针阵列相结合,有助于检测痕量炸药,包括芳香族(TNT、TNB和TNP)和脂肪族(RDX、PETN和HMX)化合物。我们证明,与较低蒸气压(10⁻¹⁰ atm)相关的较稳定的脂肪族分析物,在相似分析物浓度下,与其挥发性较高(10 atm)的芳香族(相对标准偏差约为12 - 17%)对应物相比,表现出较小的信号波动(相对标准偏差约为6 - 10%)。计算得出芳香族和脂肪族炸药的检测限分别约为2 - 6 nM和约600 - 900 pM。最后,我们表明在相同传感条件下芳香族炸药的较差性能会影响SERS-PCA分离,然后可以通过机器学习方法(带有k-NN分类的PCA)或考虑特定的NO对称伸缩指纹范围来改善。