Long Yueming, Mora Ariane, Li Francesca-Zhoufan, Gürsoy Emre, Johnston Kadina E, Arnold Frances H
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California91125, United States.
Division of Biology and Bioengineering, California Institute of Technology, Pasadena, California91125, United States.
ACS Synth Biol. 2025 Jan 17;14(1):230-238. doi: 10.1021/acssynbio.4c00625. Epub 2024 Dec 24.
Sequence-function data provides valuable information about the protein functional landscape but is rarely obtained during directed evolution campaigns. Here, we present Long-read every variant Sequencing (LevSeq), a pipeline that combines a dual barcoding strategy with nanopore sequencing to rapidly generate sequence-function data for entire protein-coding genes. LevSeq integrates into existing protein engineering workflows and comes with open-source software for data analysis and visualization. The pipeline facilitates data-driven protein engineering by consolidating sequence-function data to inform directed evolution and provide the requisite data for machine learning-guided protein engineering (MLPE). LevSeq enables quality control of mutagenesis libraries prior to screening, which reduces time and resource costs. Simulation studies demonstrate LevSeq's ability to accurately detect variants under various experimental conditions. Finally, we show LevSeq's utility in engineering protoglobins for new-to-nature chemistry. Widespread adoption of LevSeq and sharing of the data will enhance our understanding of protein sequence-function landscapes and empower data-driven directed evolution.
序列-功能数据提供了有关蛋白质功能格局的宝贵信息,但在定向进化实验中很少能获得。在此,我们展示了长读长全变体测序(LevSeq),这是一种将双条形码策略与纳米孔测序相结合的流程,可快速为整个蛋白质编码基因生成序列-功能数据。LevSeq可集成到现有的蛋白质工程工作流程中,并配有用于数据分析和可视化的开源软件。该流程通过整合序列-功能数据来促进数据驱动的蛋白质工程,为定向进化提供信息,并为机器学习指导的蛋白质工程(MLPE)提供必要的数据。LevSeq能够在筛选之前对诱变文库进行质量控制,从而降低时间和资源成本。模拟研究证明了LevSeq在各种实验条件下准确检测变体的能力。最后,我们展示了LevSeq在设计用于新型化学的原球蛋白方面的效用。LevSeq的广泛采用和数据共享将增强我们对蛋白质序列-功能格局的理解,并推动数据驱动的定向进化。