Gravante Giacomo, Arosio Alberto Daniele, Curti Nico, Biondi Riccardo, Berardi Luigi, Gandolfi Alberto, Turri-Zanoni Mario, Castelnuovo Paolo, Remondini Daniel, Bignami Maurizio
Division of Otorhinolaryngology, Department of Biotechnology and Life Sciences, University of Insubria, Ospedale di Circolo, Varese, Italy.
Unit of Otorhinolaryngology, Department of Biotechnology and Life Sciences, Ospedale di Circolo e Fondazione Macchi, University of Insubria, Via Guicciardini 9, Varese, 21100, Italy.
Eur Arch Otorhinolaryngol. 2025 Mar;282(3):1557-1566. doi: 10.1007/s00405-024-09169-9. Epub 2024 Dec 24.
Artificial intelligence (AI) demonstrates high potential when applied to radiomic analysis of magnetic resonance imaging (MRI) to discriminate sinonasal tumors. This can enhance diagnostic suspicion beyond visual assessment alone and prior to biopsy, leading to expedite the diagnostic timeline and the treatment planning. The aim of the present work is to evaluate the current advancements and accuracy of this technology in this domain.
A systematic literature review was conducted following PRISMA guidelines. Inclusion criteria comprised studies utilizing any machine learning approach applied to MRI of patients with sinonasal tumors. For each study, comprehensive data were gathered on the MRI protocols, feature extraction techniques, and classifiers employed to develop the AI model. The performance was assessed based on accuracy and area under the curve (AUC).
Fourteen studies, published between May 2017 and August 2024, were included. These studies were categorized into three groups: those examining both benign and malignant tumors, those investigating malignant tumor subpopulations, and those focusing on benign pathologies. All studies reported an AUC greater than 0.800, achieving AUC > 0.89 and accuracy > 0.81 when incorporating clinical-radiological variables. Notably, the best discrimination performance was observed in studies utilizing combined conventional MRI sequences, including T1-weighted, contrasted T1-weighted, and T2-weighted images.
The application of AI and radiomics in analyzing MRI scans presents significant promise for improving the discrimination of sinonasal tumors. Integrating clinical and radiological indicators enhances model performance, suggesting that future research should focus on larger patient cohorts and diverse AI methodologies to refine diagnostic accuracy and clinical utility.
人工智能(AI)在应用于磁共振成像(MRI)的放射组学分析以鉴别鼻窦肿瘤时显示出巨大潜力。这可以在仅靠视觉评估之外且在活检之前增强诊断怀疑,从而加快诊断进程和治疗计划。本研究的目的是评估该技术在这一领域的当前进展和准确性。
按照PRISMA指南进行系统的文献综述。纳入标准包括利用任何机器学习方法应用于鼻窦肿瘤患者MRI的研究。对于每项研究,收集了关于MRI方案、特征提取技术以及用于开发AI模型的分类器的全面数据。基于准确性和曲线下面积(AUC)评估性能。
纳入了2017年5月至2024年8月期间发表的14项研究。这些研究分为三组:检查良性和恶性肿瘤的研究、调查恶性肿瘤亚群的研究以及关注良性病变的研究。所有研究报告的AUC均大于0.800,在纳入临床 - 放射学变量时AUC > 0.89且准确性 > 0.81。值得注意的是,在使用包括T1加权、对比增强T1加权和T2加权图像在内的传统MRI序列组合的研究中观察到了最佳的鉴别性能。
AI和放射组学在分析MRI扫描中的应用对于改善鼻窦肿瘤的鉴别具有重大前景。整合临床和放射学指标可提高模型性能,这表明未来的研究应侧重于更大的患者队列和多样的AI方法,以提高诊断准确性和临床实用性。