Suppr超能文献

跨越多个生命阶段:农业害虫的细粒度分类

Crossing multiple life stages: fine-grained classification of agricultural pests.

作者信息

Han Yuantao, Zhang Cong, Zhan Xiaoyun, Huang Qiuxian, Wang Zheng

机构信息

School of Mathematics and Computer Science, Wuhan Polytechnic University, Wuhan, 430048, Hubei, China.

School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan, 430048, Hubei, China.

出版信息

Plant Methods. 2024 Dec 24;20(1):191. doi: 10.1186/s13007-024-01317-w.

Abstract

BACKGROUND

Pest infestation poses a major challenge in the field of global plant protection, seriously threatening crop safety. To enhance crop protection and optimize control strategies, this study is dedicated to the precise identification of various pests that harm crops, thereby ensuring the efficient use of agricultural pesticides and achieving optimal plant protection.

RESULTS

Currently, pest identification technologies lack accuracy, especially in recognizing pests across different growth stages. To address this issue, we constructed a large pest dataset that includes 102 pest species and 369 pest stages, totaling 51,670 images. This dataset focuses on the identification of pest growth stages, aimed at improving the efficiency of pest management and the effectiveness of plant protection. Moreover, we have introduced two innovative technologies to tackle the significant differences between pest growth stages: a Multi-stage Co-supervision mechanism and a Spatial Attention module. These technologies significantly enhance the model's ability to extract key features, thus boosting recognition accuracy. Compared to the industry-leading Vision Transformer-based methods, our model shows a significant improvement, increasing accuracy by 3.67% and the F1 score by 2.49%, without a significant increase in the number of parameters.

CONCLUSIONS

Extensive experimental validation has demonstrated our model's significant advantages in enhancing pest identification accuracy, which holds substantial practical significance for the precise application of pesticides and crop protection.

摘要

背景

害虫侵扰是全球植物保护领域面临的一项重大挑战,严重威胁作物安全。为加强作物保护并优化防治策略,本研究致力于精确识别危害作物的各类害虫,从而确保农业杀虫剂的高效使用并实现最佳的植物保护效果。

结果

目前,害虫识别技术缺乏准确性,尤其是在识别不同生长阶段的害虫方面。为解决这一问题,我们构建了一个大型害虫数据集,其中包括102种害虫物种和369个害虫生长阶段,共计51,670张图像。该数据集专注于害虫生长阶段的识别,旨在提高害虫管理效率和植物保护效果。此外,我们引入了两种创新技术来应对害虫生长阶段之间的显著差异:多阶段协同监督机制和空间注意力模块。这些技术显著增强了模型提取关键特征的能力,从而提高了识别准确率。与行业领先的基于视觉Transformer的方法相比,我们的模型表现出显著提升,准确率提高了3.67%,F1分数提高了2.49%,且参数数量没有显著增加。

结论

广泛的实验验证表明,我们的模型在提高害虫识别准确率方面具有显著优势,这对于农药的精准施用和作物保护具有重要的实际意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9ff/11667903/d6b8d2d1233b/13007_2024_1317_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验