Wang Sibo, Wu Wanlong, Jiang Quanwei, Li Chen, Shi Hua-Yu, Liu Xiao-Xia, Sun Xiaoqi
Department of Chemistry, Northeastern University Shenyang 110819 China
College of Chemistry & Chemical Engineering, Yan'an University Yanan 716000 China
Chem Sci. 2024 Dec 23;16(4):1802-1808. doi: 10.1039/d4sc07285e. eCollection 2025 Jan 22.
Aqueous Zn-S batteries provide competitive energy density for large-scale energy storage systems. However, the cathode active material exhibits poor electrical conductivity especially at the discharged state of ZnS. Its morphology generated in cells thus directly determines the cathode electrochemical activity. Here, we reveal the ZnS growth behavior and control its morphology by the anion donor number (DN) of zinc salts in electrolytes. The anion DN affects the salt dissociation degree and furthermore sulfide solubility in electrolytes, which finally determines ZnS growth preference on existing nuclei or carbon substrates. As a result, 3D ZnS is realized from the high DN ZnBr electrolyte, whereas a 2D passivation film is formed from low DN Zn(TFSI). Thanks to the facile electron paths and abundant reaction sites with 3D morphology, the sulfur cathode reaches a high capacity of 1662 mA h g at 0.1 A g and retains 872 mA h g capacity after 400 cycles at 3 A g.
水系锌硫电池为大规模储能系统提供了具有竞争力的能量密度。然而,正极活性材料表现出较差的导电性,尤其是在ZnS放电状态下。其在电池中生成的形态直接决定了正极的电化学活性。在此,我们揭示了ZnS的生长行为,并通过电解质中锌盐的阴离子给体数(DN)来控制其形态。阴离子DN影响盐的解离程度,进而影响硫化物在电解质中的溶解度,最终决定ZnS在现有晶核或碳基底上的生长偏好。结果,由高DN的ZnBr电解质实现了三维ZnS,而由低DN的Zn(TFSI)形成了二维钝化膜。得益于三维形态带来的便捷电子路径和丰富反应位点,硫正极在0.1 A g下达到了1662 mA h g的高容量,在3 A g下循环400次后仍保留872 mA h g的容量。