Ghanbari Reza, Terry Ann, Wojno Sylwia, Bek Marko, Sekar Kesavan, Sonker Amit Kumar, Nygård Kim, Ghai Viney, Bianco Simona, Liebi Marianne, Matic Aleksandar, Westman Gunnar, Nypelö Tiina, Kádár Roland
Department of Industrial and Materials Science, Division of Engineering Materials, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden.
MAX IV Laboratory, Lund University, Lund, SE-224 84, Sweden.
Adv Sci (Weinh). 2025 Feb;12(7):e2410920. doi: 10.1002/advs.202410920. Epub 2024 Dec 25.
Simultaneous rheological, polarized light imaging, and small-angle X-ray scattering experiments (Rheo-PLI-SAXS) are developed, thereby providing unprecedented level of insight into the multiscale orientation of hierarchical systems in simple shear. Notably, it is observed that mesoscale alignment in the flow direction does not develop simultaneously across nano-micro lengthscales in sheared suspensions of rod-like chiral-nematic (meso) phase forming cellulose nanocrystals. Rather, with increasing shear rate, orientation is observed first at mesoscale and then extends to the nanoscale, with influencing factors being the aggregation state of the hierarchy and concentration. In biphasic systems, where an isotropic phase co-exists with self-assembled liquid crystalline mesophase domains, the onset of mesodomain alignment towards the flow direction can occur at shear rates nearing one decade before a progressive increase in preferential orientation at nanoscale is detected. If physical confinement prevents the full formation of a cholesteric phase, mesoscale orientation occurs in shear rate ranges that correspond to de-structuring at nanoscale. Interestingly, nano- and mesoscale orientations appear to converge only for biphasic suspensions with primary nanoparticles predominantly made up of individual crystallites and in a high-aspect ratio nematic-forming thin-wall nanotube system. The nano-micro orientation propagation is attributed to differences in the elongation and breakage of mesophase domains.
同时开展了流变学、偏振光成像和小角X射线散射实验(Rheo-PLI-SAXS),从而为简单剪切中分级系统的多尺度取向提供了前所未有的深入见解。值得注意的是,在形成手性向列(介观)相的棒状纤维素纳米晶体的剪切悬浮液中,沿流动方向的介观尺度排列并非在纳米-微米长度尺度上同时发展。相反,随着剪切速率的增加,取向首先在介观尺度上被观察到,然后扩展到纳米尺度,影响因素是分级结构的聚集状态和浓度。在双相系统中,各向同性相与自组装液晶中间相域共存,在检测到纳米尺度上优先取向逐渐增加之前近十年的剪切速率下,中间相域开始沿流动方向排列。如果物理限制阻止了胆甾相的完全形成,介观尺度取向会出现在与纳米尺度解构相对应的剪切速率范围内。有趣的是,纳米和介观尺度取向似乎仅在主要由单个微晶组成的初级纳米颗粒的双相悬浮液以及高纵横比的向列相形成薄壁纳米管系统中才会趋同。纳米-微米取向传播归因于中间相域伸长和断裂的差异。