Salimi Elham, Absalan Sara, Robitaille Julien, Montes Johnny, Butler Michael, Thomson Douglas, Bridges Greg
Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, Manitoba, Canada.
Human Health Therapeutics, National Research Council Canada, Montreal, Quebec, Canada.
Biotechnol Prog. 2025 Mar-Apr;41(2):e3519. doi: 10.1002/btpr.3519. Epub 2024 Dec 26.
Bulk electrical impedance spectroscopy (bio-capacitance) probes, hold significant promise for real-time cell monitoring in bioprocesses. Focusing on Chinese hamster ovary (CHO) cells, we present a sensitivity analysis framework to assess the impact of cell and culture properties on the complex permittivity spectrum, ε, and its associated parameters, permittivity increment, Δε, critical frequency, f, and Cole-Cole parameter, α, measured by bio-capacitance probes. Our sensitivity analysis showed that Δε is highly sensitive to cell size and concentration, making it suitable for estimating biovolume during the exponential growth phase, whereas f provides information about cumulative changes in cell size, membrane permittivity, and cytoplasm conductivity during the transition to death phase. The analysis indicated that specific information about cell membrane permittivity or internal conductivity cannot be extracted from ε spectrum. Based on the sensitivity analysis, we proposed two alternative parameters for monitoring cells in bioprocesses: Δε and Δε/Δε, using measurements at 300 kHz, 1 MHz, and 10 MHz. Δε is suitable for estimating viable cell density during the exponential growth phase due to its lower sensitivity to cell size. Δε/Δε can replace f due to similar sensitivities to cell size and dielectric properties. These frequencies are within most bio-capacitance probes' optimal operation range, eliminating the need for low-frequency electrode polarization and high-frequency stray capacitances corrections. Experimental measurements on CHO cells confirmed the results of sensitivity analysis.
体电阻抗谱(生物电容)探头在生物过程中的实时细胞监测方面具有巨大潜力。以中国仓鼠卵巢(CHO)细胞为研究对象,我们提出了一个灵敏度分析框架,以评估细胞和培养特性对通过生物电容探头测量的复介电常数谱ε及其相关参数——介电常数增量Δε、临界频率f和科尔 - 科尔参数α的影响。我们的灵敏度分析表明,Δε对细胞大小和浓度高度敏感,使其适用于估计指数生长期的生物体积,而f提供了关于细胞大小、膜介电常数和细胞质电导率在向死亡期转变过程中累积变化的信息。分析表明,无法从ε谱中提取关于细胞膜介电常数或内部电导率的特定信息。基于灵敏度分析,我们提出了两个用于生物过程中细胞监测的替代参数:Δε和Δε/Δε,使用在300 kHz、1 MHz和10 MHz下的测量值。由于Δε对细胞大小的敏感性较低,它适用于估计指数生长期的活细胞密度。由于对细胞大小和介电特性具有相似的敏感性,Δε/Δε可以替代f。这些频率在大多数生物电容探头的最佳操作范围内,无需进行低频电极极化和高频杂散电容校正。对CHO细胞的实验测量证实了灵敏度分析的结果。