Suppr超能文献

利用机器学习揭示微塑料对不同动物肠道微生物群的影响

Unraveling Microplastic Effects on Gut Microbiota across Various Animals Using Machine Learning.

作者信息

Yin Lingzi, Yang Minghao, Teng Anqi, Ni Can, Wang Pandeng, Tang Shaojun

机构信息

Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong 511453, China.

Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR 999077, China.

出版信息

ACS Nano. 2025 Jan 14;19(1):369-380. doi: 10.1021/acsnano.4c07885. Epub 2024 Dec 26.

Abstract

Microplastics, rapidly expanding and durable pollutant, have been shown to significantly impact gut microbiota across a spectrum of animal species. However, comprehensive analyses comparing microplastic effects on gut microbiota among these species are still limited, and the critical factors driving these effects remain to be clarified. To address these issues, we compiled 1352 gut microbiota samples from six animal categories, employing machine learning to conduct an in-depth meta-analysis. Our study revealed that mice, compared with other animals, not only exhibit a heightened susceptibility to the toxic effects of microplastics─evidenced by decreased gut microbiota diversity, increased / ratios, destabilized microbial networks, and disruption in the equilibrium of beneficial and harmful bacteria─but also possess limited potential to degrade microplastics, unlike earthworms and insects. Furthermore, machine learning models confirmed that exposure duration is the key factor driving changes induced by microplastics in gut microbiota. We also identified , , and as potential biomarkers for detecting microplastic toxicity in the animal gut. Overall, these findings provide valuable insights into the health risks and driving factors associated with microplastic exposure across multiple animal species.

摘要

微塑料是一种迅速扩散且持久存在的污染物,已被证明会对多种动物的肠道微生物群产生重大影响。然而,比较这些物种中微塑料对肠道微生物群影响的综合分析仍然有限,驱动这些影响的关键因素仍有待阐明。为了解决这些问题,我们收集了来自六个动物类别的1352个肠道微生物群样本,采用机器学习进行深入的荟萃分析。我们的研究表明,与其他动物相比,小鼠不仅对微塑料的毒性作用表现出更高的易感性——表现为肠道微生物群多样性降低、/比值增加、微生物网络不稳定以及有益菌和有害菌平衡被破坏——而且与蚯蚓和昆虫不同,其降解微塑料的潜力有限。此外,机器学习模型证实,暴露持续时间是驱动微塑料引起肠道微生物群变化的关键因素。我们还确定了、和作为检测动物肠道中微塑料毒性的潜在生物标志物。总体而言,这些发现为跨多种动物物种的微塑料暴露相关健康风险和驱动因素提供了有价值的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验