Suppr超能文献

通过激酶组分析预测转移性透明细胞肾细胞癌患者对舒尼替尼的反应。

Kinomic profiling to predict sunitinib response of patients with metastasized clear cell Renal Cell Carcinoma.

作者信息

Oosterwijk-Wakka Jeannette C, Houkes Liesbeth, van der Zanden Loes F M, Kiemeney Lambertus A L M, Junker Kerstin, Warren Anne Y, Eisen Tim, Jaehde Ulrich, Radu Marius T, Ruijtenbeek Rob, Oosterwijk Egbert

机构信息

Radboud University Medical Center, 6525 GA, Nijmegen, the Netherlands.

PamGene International B.V., 5211 HH 's-Hertogenbosch, the Netherlands.

出版信息

Neoplasia. 2025 Feb;60:101108. doi: 10.1016/j.neo.2024.101108. Epub 2024 Dec 25.

Abstract

INTRODUCTION

Treatment with Sunitinib, a potent multitargeted receptor tyrosine kinase inhibitor (TKI) has increased the progression-free survival (PFS) and overall-survival (OS) of patients with metastasized renal cell carcinoma (mRCC). With modest OS improvement and variable response and toxicity predictive and/or prognostic biomarkers are needed to personalize patient management: Prediction of individual TKI therapy response and resistance will increase successful treatment outcome while reducing unnecessary drug use and expense. The aim of this study was to investigate whether kinase activity analysis can predict sunitinib response and/or toxicity using tissue samples obtained from primary clear cell RCC (ccRCC) from a cohort of clinically annotated patients with mRCC receiving sunitinib as first-line treatment.

MATERIALS AND METHODS

EuroTARGET partners collected ccRCC and matched normal kidney tissue samples immediately after surgery, snap-frozen and stored at -80°C until use. Phosphotyrosine-activity profiling was performed using PamChip® peptide microarrays (144 peptides derived from known phosphorylation sites in Protein Tyrosine Kinase substrates) of lysed tissue samples (5 µg protein input) of 163 mRCC patients. Evolve software Was used to analyze kinome profiles and Bionavigator was used for unsupervised and supervised clustering. The kinexus kinase predictor (www.phosphonet.ca) was used to analyze the peptide lists within the clusters.

RESULTS

Kinome data was available from 94 patients who received sunitinib as 1st-line treatment and had complete follow-up of their clinical data (PFS, OS and toxicity) for at least 6 months. Matched normal tissue was available from 14 mRCC patients. Supervised clustering of basal kinome activity could correctly classify mRCC patients with PFS >9 months versus PFS<9 months with an accuracy of 61 %. Unsupervised hierarchical clustering revealed 3 major clusters related to immune signaling, VEGF pathway, and immune signaling/cell adhesion. Basal kinase activity levels of patients with short PFS were substantially higher compared to patients who experienced extended PFS.

DISCUSSION/CONCLUSION: Based on kinase levels ccRCC tumors can be subdivided into 3 clusters which may reflect the aggressiveness of these tumors. The accuracy of response prediction of 61 % based on basal kinase levels is too low to justify implementation. STK assays may help to predict sunitinib toxicity and guide clinical management. Additionally, it is possible that mRCC patients with an immune kinase signature are better checkpoint inhibitor candidates, but this needs to be studied.

摘要

引言

舒尼替尼是一种有效的多靶点受体酪氨酸激酶抑制剂(TKI),用其治疗可提高转移性肾细胞癌(mRCC)患者的无进展生存期(PFS)和总生存期(OS)。由于OS改善程度有限,且反应和毒性存在差异,因此需要预测性和/或预后生物标志物来实现患者管理的个性化:预测个体TKI治疗反应和耐药性将提高治疗成功率,同时减少不必要的药物使用和费用。本研究的目的是调查激酶活性分析能否使用从一组接受舒尼替尼一线治疗的临床注释mRCC患者的原发性透明细胞肾细胞癌(ccRCC)中获取的组织样本,预测舒尼替尼的反应和/或毒性。

材料与方法

EuroTARGET合作伙伴在手术后立即收集ccRCC和匹配的正常肾组织样本,速冻并储存在-80°C直至使用。使用PamChip®肽微阵列(144种源自蛋白酪氨酸激酶底物中已知磷酸化位点的肽)对163例mRCC患者的裂解组织样本(输入5μg蛋白质)进行磷酸酪氨酸活性分析。使用Evolve软件分析激酶组图谱,使用Bionavigator进行无监督和监督聚类。使用kinexus激酶预测器(www.phosphonet.ca)分析聚类中的肽列表。

结果

94例接受舒尼替尼一线治疗且临床数据(PFS、OS和毒性)至少有6个月完整随访的患者有激酶组数据。14例mRCC患者有匹配的正常组织。基础激酶组活性的监督聚类能够正确分类PFS>9个月与PFS<9个月的mRCC患者,准确率为61%。无监督层次聚类揭示了与免疫信号、VEGF途径和免疫信号/细胞粘附相关的3个主要聚类。PFS短的患者的基础激酶活性水平明显高于PFS长的患者。

讨论/结论:基于激酶水平,ccRCC肿瘤可分为3个聚类,这可能反映了这些肿瘤的侵袭性。基于基础激酶水平的反应预测准确率为61%,太低而无法证明其可实施性。STK分析可能有助于预测舒尼替尼毒性并指导临床管理。此外,具有免疫激酶特征的mRCC患者可能是更好的检查点抑制剂候选者,但这需要进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e15/11732189/d306edc67054/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验