Valiente Luis, Riomoros-Barahona Valentín, Gil-Redondo Juan Carlos, Castón José R, Valbuena Alejandro, Mateu Mauricio G
Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain.
Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain.
J Mol Biol. 2025 Feb 1;437(3):168922. doi: 10.1016/j.jmb.2024.168922. Epub 2024 Dec 24.
Human rhinoviruses (RV) are among the most frequent human pathogens. As major causative agents of common colds they originate serious socioeconomic problems and huge expenditure every year, and they also exacerbate severe respiratory diseases. No anti-rhinoviral drugs or vaccines are available so far. Antiviral drug design may benefit from an understanding of the role during the infectious cycle of the interactions in the virion between the capsid and the viral nucleic acid. The genomic RNA inside the human RV virion forms a dodecahedral cage made of 30 double-stranded RNA elements that interact with equivalent sites at the capsid inner wall. RNA dodecahedral cages also occur in distantly related insect and plant viruses. However, the functional role(s) of the interactions between any dodecahedral cage and the capsid remained to be established. Here we describe an extensive structure-function mutational analysis of the capsid-RNA dodecahedral cage interface in the RV virion, to dissect the role of the interactions between the capsid and the cage-forming RNA duplexes in: (i) infection by RV; (ii) virus biological fitness; (iii) virion assembly; (iv) virion stability; and (v) viral RNA uncoating. The results reveal that the capsid-bound dsRNA dodecahedral cage in the human RV virion is a multifunctional structural element. Two structurally overlapping subsets of RNA duplex-capsid interactions promote virus infectivity and biological fitness by respectively facilitating virion assembly or restraining the untimely, unproductive uncoating of the viral RNA genome. These results provide new insights into virion morphogenesis and genome uncoating, and have implications for antiviral drug design.
人鼻病毒(RV)是最常见的人类病原体之一。作为普通感冒的主要病原体,它们每年引发严重的社会经济问题并造成巨额开支,还会加重严重的呼吸道疾病。目前尚无抗鼻病毒药物或疫苗。了解病毒衣壳与病毒核酸在病毒粒子感染周期中的相互作用所起的作用,可能有助于抗病毒药物的设计。人RV病毒粒子内部的基因组RNA形成一个由30个双链RNA元件组成的十二面体笼,这些元件与衣壳内壁的对应位点相互作用。RNA十二面体笼也存在于亲缘关系较远的昆虫和植物病毒中。然而,任何十二面体笼与衣壳之间相互作用的功能作用仍有待确定。在这里,我们描述了对RV病毒粒子中衣壳-RNA十二面体笼界面进行的广泛的结构-功能突变分析,以剖析衣壳与形成笼状结构的RNA双链体之间的相互作用在以下方面所起的作用:(i)RV感染;(ii)病毒生物学适应性;(iii)病毒粒子组装;(iv)病毒粒子稳定性;以及(v)病毒RNA脱壳。结果表明,人RV病毒粒子中与衣壳结合的dsRNA十二面体笼是一种多功能结构元件。RNA双链体-衣壳相互作用的两个结构重叠子集分别通过促进病毒粒子组装或抑制病毒RNA基因组过早、无生产性的脱壳来促进病毒感染性和生物学适应性。这些结果为病毒粒子形态发生和基因组脱壳提供了新的见解,并对抗病毒药物设计具有启示意义。