Suppr超能文献

揭示锌嵌入氮掺杂碳催化剂中质子-电子转移途径以增强CO电还原性能

Unveiling the Proton-Electron Transfer Pathway in Zn-Embedded N-Doped Carbon Catalyst for Enhanced CO Electroreduction.

作者信息

Wang Rong, Gao Chuan, Su Haiwei, Chen Zhen, Li Junhua, Peng Yue

机构信息

State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China.

出版信息

ACS Appl Mater Interfaces. 2025 Jan 8;17(1):920-929. doi: 10.1021/acsami.4c15110. Epub 2024 Dec 26.

Abstract

Proton-electron transfer (PET) processes play a pivotal role in numerous electrochemical reactions; yet, effectively harnessing them remains a formidable challenge. Consequently, unveiling the PET pathway is imperative to elucidate the factors influencing the efficiency and selectivity of small molecule electrochemical conversion. In this study, a Zn-NC model catalyst with N and C vacancies was synthesized using a hydriding method to investigate the universal impact of PET on CO electroreduction. The introduction of N vacancies induced the formation of a distinctive Zn-N topological structure and atomically populated Zn sites with lower valence states, thereby facilitating the cleavage of the C═O bonds. Conversely, C vacancies led to the formation of stable C-H bonds and tuned the rate of dissociation of HO to H*. In comparison to sequential proton-electron transfer, concerted proton-electron transfer significantly enhanced the formation of *COOH species, a critical step in the CO reduction process on a Zn-enhanced N-doped carbon catalyst. The catalyst exhibited a remarkable 96% CO Faradaic efficiency at -0.36 V vs RHE. This research contributes to the ongoing endeavors to unlock the full potential of concerted proton-electron transfer in electrochemical synthesis and its application in sustainable energy and environmental solutions.

摘要

质子-电子转移(PET)过程在众多电化学反应中起着关键作用;然而,有效利用它们仍然是一项艰巨的挑战。因此,揭示PET途径对于阐明影响小分子电化学转化效率和选择性的因素至关重要。在本研究中,采用氢化法合成了具有N和C空位的Zn-NC模型催化剂,以研究PET对CO电还原的普遍影响。N空位的引入诱导形成了独特的Zn-N拓扑结构和原子填充的低价态Zn位点,从而促进了C═O键的断裂。相反,C空位导致形成稳定的C-H键,并调节了HO到H的解离速率。与顺序质子-电子转移相比,协同质子-电子转移显著增强了COOH物种的形成,这是Zn增强的N掺杂碳催化剂上CO还原过程中的关键步骤。该催化剂在相对于可逆氢电极(RHE)为-0.36 V时表现出96%的显著CO法拉第效率。这项研究有助于持续努力挖掘协同质子-电子转移在电化学合成中的全部潜力及其在可持续能源和环境解决方案中的应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验