文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

纳米酶介导的谷胱甘肽耗竭用于增强基于活性氧的癌症治疗:综述

Nanozyme-mediated glutathione depletion for enhanced ROS-based cancer therapies: a comprehensive review.

作者信息

Wang Xinyu, Wei Nan, Zhang Yang, Fang Yuan, Li Yijun, Li Songguo, Wang Zhanggui, Sun Chenglong

机构信息

School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, People's Republic of China.

Department of radiotherapy, Anhui No.2 Provincial People's Hospital, Hefei, Anhui, people's Republic of China.

出版信息

Nanomedicine (Lond). 2025 Feb;20(3):279-290. doi: 10.1080/17435889.2024.2446138. Epub 2024 Dec 27.


DOI:10.1080/17435889.2024.2446138
PMID:39726369
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11792818/
Abstract

Nanozymes can improve reactive oxygen species (ROS)-based cancer therapies by targeting cancer cells' antioxidant defense mechanisms, particularly glutathione (GSH) depletion, to overcome ROS-resistant cancer cells. Nanozymes, innovative enzyme-mimetic nanomaterials, can generate ROS, alter the tumor microenvironment (TME), and synergize with photodynamic therapy (PDT), chemodynamic therapy (CDT), radiotherapy, and immunotherapy. This review shows how nanozymes catalyze ROS generation, selectively deplete GSH, and target cancer elimination, offering clear advantages over standard therapies. Nanozymes selectively target cancer cells' antioxidant defenses to improve PDT, CDT, and radiation therapies. To maximize nanozyme-based cancer treatment efficacy, biodistribution, biocompatibility, and tumor heterogeneity must be assessed. To improve cancer treatment, multifunctional, stimuli-responsive nanozymes and synergistic combination drugs should be developed.

摘要

纳米酶可以通过靶向癌细胞的抗氧化防御机制,特别是谷胱甘肽(GSH)耗竭,来改善基于活性氧(ROS)的癌症治疗,从而克服对ROS具有抗性的癌细胞。纳米酶是创新的模拟酶纳米材料,可产生活性氧,改变肿瘤微环境(TME),并与光动力疗法(PDT)、化学动力疗法(CDT)、放射疗法和免疫疗法协同作用。这篇综述展示了纳米酶如何催化活性氧的产生、选择性地消耗谷胱甘肽以及靶向消除癌症,与标准疗法相比具有明显优势。纳米酶选择性地靶向癌细胞的抗氧化防御,以改善光动力疗法、化学动力疗法和放射疗法。为了最大化基于纳米酶的癌症治疗效果,必须评估其生物分布、生物相容性和肿瘤异质性。为了改善癌症治疗,应开发多功能、刺激响应性纳米酶和协同组合药物。

相似文献

[1]
Nanozyme-mediated glutathione depletion for enhanced ROS-based cancer therapies: a comprehensive review.

Nanomedicine (Lond). 2025-2

[2]
Removing Barriers to Tumor 'Oxygenation': Depleting Glutathione Nanozymes in Cancer Therapy.

Int J Nanomedicine. 2025-5-1

[3]
Novel strategies of glutathione depletion in photodynamic and chemodynamic therapy: A review.

Adv Clin Exp Med. 2024-9-20

[4]
Nitric oxide-mediated regulation of mitochondrial protective autophagy for enhanced chemodynamic therapy based on mesoporous Mo-doped CuS nanozymes.

Acta Biomater. 2022-10-1

[5]
Tumor Microenvironment-Modulated Nanozymes for NIR-II-Triggered Hyperthermia-Enhanced Photo-Nanocatalytic Therapy via Disrupting ROS Homeostasis.

Int J Nanomedicine. 2021

[6]
Current advances in nanozyme-based nanodynamic therapies for cancer.

Acta Biomater. 2025-1-1

[7]
Nanotherapeutics induced redox resetting of oxidative and nitrosative stress: targeting glutathione-depletion in cancer.

Nanomedicine (Lond). 2025-5

[8]
Cancer therapy with engineered nanozymes: from molecular design to tumour-responsive catalysis.

Nanomedicine (Lond). 2025-6-18

[9]
Tumor microenvironment-responsive nanozymes achieve photothermal-enhanced multiple catalysis against tumor hypoxia.

Acta Biomater. 2021-11

[10]
Multienzymatic Hybrid Metalloenzymes Triggering Cascade Reactions-Regulated Tumor Redox Homeostasis and Immunosuppressive Microenvironment for Catalytic Immunotherapy.

ACS Nano. 2025-7-8

引用本文的文献

[1]
An Fe(III)-covalent organic framework (COF)-sorafenib nanoplatform induces chemo-ferroptosis for enhanced hepatocellular carcinoma immunotherapy.

Mater Today Bio. 2025-7-26

[2]
Cancer therapy with engineered nanozymes: from molecular design to tumour-responsive catalysis.

Nanomedicine (Lond). 2025-6-18

本文引用的文献

[1]
Facile synthesis of an acid-responsive cinnamaldehyde-pendant polycarbonate for enhancing the anticancer efficacy of etoposide glutathione depletion.

RSC Adv. 2024-5-13

[2]
Light-Triggered Nanozymes Remodel the Tumor Hypoxic and Immunosuppressive Microenvironment for Ferroptosis-Enhanced Antitumor Immunity.

ACS Nano. 2024-5-14

[3]
Reactive oxygen species in biological systems: Pathways, associated diseases, and potential inhibitors-A review.

Food Sci Nutr. 2023-12-1

[4]
Shape-Regulated Photothermal-Catalytic Tumor Therapy Using Polydopamine@Pt Nanozymes with the Elicitation of an Immune Response.

Small. 2024-5

[5]
All-in-one HN@Cu-MOF nanoparticles with enhanced reactive oxygen species generation and GSH depletion for effective tumor treatment.

J Mater Chem B. 2023-12-13

[6]
A Mild Hyperthermia Hollow Carbon Nanozyme as Pyroptosis Inducer for Boosted Antitumor Immunity.

ACS Nano. 2023-11-28

[7]
An Update on Glutathione's Biosynthesis, Metabolism, Functions, and Medicinal Purposes.

Curr Med Chem. 2024

[8]
Peroxide-Simulating and GSH-Depleting Nanozyme for Enhanced Chemodynamic/Photodynamic Therapy via Induction of Multisource ROS.

ACS Appl Mater Interfaces. 2023-10-18

[9]
Remodeling of Tumor Microenvironment by Nanozyme Combined cGAS-STING Signaling Pathway Agonist for Enhancing Cancer Immunotherapy.

Int J Mol Sci. 2023-9-11

[10]
A Covalent Organic Framework Derived N-doped Carbon Nanozyme as the All-rounder for Targeted Catalytic Therapy and NIR-II Photothermal Therapy of Cancer.

ACS Appl Mater Interfaces. 2023-9-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索