文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

肿瘤微环境调控的纳米酶用于近红外二区触发的热疗增强光纳米催化治疗,通过破坏 ROS 平衡。

Tumor Microenvironment-Modulated Nanozymes for NIR-II-Triggered Hyperthermia-Enhanced Photo-Nanocatalytic Therapy via Disrupting ROS Homeostasis.

机构信息

Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, People's Republic of China.

MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, People's Republic of China.

出版信息

Int J Nanomedicine. 2021 Jul 5;16:4559-4577. doi: 10.2147/IJN.S309062. eCollection 2021.


DOI:10.2147/IJN.S309062
PMID:34267513
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8275154/
Abstract

PURPOSE: Reactive oxygen species (ROS) are a group of signaling biomolecules that play important roles in the cell cycle. When intracellular ROS homeostasis is disrupted, it can induce cellular necrosis and apoptosis. It is desirable to effectively cascade-amplifying ROS generation and weaken antioxidant defense for disrupting ROS homeostasis in tumor microenvironment (TME), which has been recognized as a novel and ideal antitumor strategy. Multifunctional nanozymes are highly promising agents for ROS-mediated therapy. METHODS: This study constructed a novel theranostic nanoagent based on PEG@CuS@Ce6 nanozymes (PCCNs) through a facile one-step hydrothermal method. We systematically investigated the photodynamic therapy (PDT)/photothermal therapy (PTT) properties, catalytic therapy (CTT) and glutathione (GSH) depletion activities of PCCNs, antitumor efficacy induced by PCCNs in vitro and in vivo. RESULTS: PCCNs generate singlet oxygen (O) with laser (660 nm) irradiation and use catalytic reactions to produce hydroxyl radical (•OH). Moreover, PCCNs show the high photothermal performance under NIR II 1064-nm laser irradiation, which can enhance CTT/PDT efficiencies to increase ROS generation. The properties of O evolution and GSH consumption of PCCNs achieve hypoxia-relieved PDT and destroy cellular antioxidant defense system respectively. The excellent antitumor efficacy in 4T1 tumor-bearing mice of PCCNs is achieved through disrupting ROS homeostasis-involved therapy under the guidance of photothermal/photoacoustic imaging. CONCLUSION: Our study provides a proof of concept of "all-in-one" nanozymes to eliminate tumors via disrupting ROS homeostasis.

摘要

目的:活性氧(ROS)是一组信号生物分子,在细胞周期中发挥重要作用。当细胞内 ROS 动态平衡被破坏时,会诱导细胞坏死和凋亡。有效级联放大 ROS 的产生并削弱抗氧化防御,以破坏肿瘤微环境(TME)中的 ROS 动态平衡,这已被认为是一种新的理想的抗肿瘤策略。多功能纳米酶是用于 ROS 介导的治疗的有前途的试剂。

方法:本研究通过简便的一步水热法构建了基于聚乙二醇@CuS@Ce6 纳米酶(PCCNs)的新型治疗性纳米制剂。我们系统地研究了 PCCNs 的光动力疗法(PDT)/光热疗法(PTT)特性、催化治疗(CTT)和谷胱甘肽(GSH)耗竭活性、PCCNs 在体外和体内的抗肿瘤功效。

结果:PCCNs 在激光(660nm)照射下产生单线态氧(O),并利用催化反应产生羟基自由基(•OH)。此外,PCCNs 在 NIR II 1064nm 激光照射下表现出高光热性能,可增强 CTT/PDT 效率,增加 ROS 产生。PCCNs 的 O 演化和 GSH 消耗特性分别实现了缺氧缓解 PDT 和破坏细胞抗氧化防御系统。在光热/光声成像指导下,通过破坏 ROS 动态平衡相关治疗,PCCNs 在 4T1 荷瘤小鼠中实现了优异的抗肿瘤功效。

结论:本研究为通过破坏 ROS 动态平衡消除肿瘤的“一体化”纳米酶提供了概念验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0619/8275154/cb6ab37c691b/IJN-16-4559-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0619/8275154/3daf03593bcb/IJN-16-4559-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0619/8275154/b587086a3226/IJN-16-4559-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0619/8275154/f76ecce3619a/IJN-16-4559-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0619/8275154/4c6988c99bdd/IJN-16-4559-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0619/8275154/e01d765b0193/IJN-16-4559-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0619/8275154/f6a5740ee8dd/IJN-16-4559-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0619/8275154/34011c240f73/IJN-16-4559-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0619/8275154/32d68a0a4f4f/IJN-16-4559-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0619/8275154/c9d426dd1c9a/IJN-16-4559-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0619/8275154/186c418fb159/IJN-16-4559-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0619/8275154/cb6ab37c691b/IJN-16-4559-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0619/8275154/3daf03593bcb/IJN-16-4559-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0619/8275154/b587086a3226/IJN-16-4559-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0619/8275154/f76ecce3619a/IJN-16-4559-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0619/8275154/4c6988c99bdd/IJN-16-4559-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0619/8275154/e01d765b0193/IJN-16-4559-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0619/8275154/f6a5740ee8dd/IJN-16-4559-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0619/8275154/34011c240f73/IJN-16-4559-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0619/8275154/32d68a0a4f4f/IJN-16-4559-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0619/8275154/c9d426dd1c9a/IJN-16-4559-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0619/8275154/186c418fb159/IJN-16-4559-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0619/8275154/cb6ab37c691b/IJN-16-4559-g0011.jpg

相似文献

[1]
Tumor Microenvironment-Modulated Nanozymes for NIR-II-Triggered Hyperthermia-Enhanced Photo-Nanocatalytic Therapy via Disrupting ROS Homeostasis.

Int J Nanomedicine. 2021

[2]
Tumor microenvironment-responsive nanozymes achieve photothermal-enhanced multiple catalysis against tumor hypoxia.

Acta Biomater. 2021-11

[3]
GSH-Depleted Nanozymes with Hyperthermia-Enhanced Dual Enzyme-Mimic Activities for Tumor Nanocatalytic Therapy.

Adv Mater. 2020-10

[4]
NIR-II-Responsive Versatile Nanozyme Based on HO Cycling and Disrupting Cellular Redox Homeostasis for Enhanced Synergistic Cancer Therapy.

ACS Biomater Sci Eng. 2024-8-12

[5]
Ultrasmall CuS nanodots as photothermal-enhanced Fenton nanocatalysts for synergistic tumor therapy at NIR-II biowindow.

Biomaterials. 2019-3-16

[6]
A tumor-microenvironment fully responsive nano-platform for MRI-guided photodynamic and photothermal synergistic therapy.

J Mater Chem B. 2020-9-23

[7]
Multifunctional MnO/AgSbS Nanotheranostic Agent for Single-Laser-Triggered Tumor Synergistic Therapy in the NIR-II Biowindow.

ACS Appl Mater Interfaces. 2022-2-2

[8]
NIR-II-driven and glutathione depletion-enhanced hypoxia-irrelevant free radical nanogenerator for combined cancer therapy.

J Nanobiotechnology. 2021-9-6

[9]
All-in-One Theranostic Nanoplatform Based on Hollow MoS for Photothermally-maneuvered Oxygen Self-enriched Photodynamic Therapy.

Theranostics. 2018-1-1

[10]
Multifunctional NIR-responsive poly(vinylpyrrolidone)-Cu-Sb-S nanotheranostic agent for photoacoustic imaging and photothermal/photodynamic therapy.

Acta Biomater. 2018-5-9

引用本文的文献

[1]
Removing Barriers to Tumor 'Oxygenation': Depleting Glutathione Nanozymes in Cancer Therapy.

Int J Nanomedicine. 2025-5-1

[2]
Novel Strategy for Optimized Nanocatalytic Tumor Therapy: From an Updated View.

Small Sci. 2022-6-3

[3]
Recent advances in copper homeostasis-involved tumor theranostics.

Asian J Pharm Sci. 2024-10

[4]
Design of a nanozyme-based magnetic nanoplatform to enhance photodynamic therapy and immunotherapy.

J Pharm Anal. 2024-9

[5]
Smart Nanozymes for Cancer Therapy: The Next Frontier in Oncology.

Adv Healthc Mater. 2023-10

[6]
Approaches to Improve EPR-Based Drug Delivery for Cancer Therapy and Diagnosis.

J Pers Med. 2023-2-23

[7]
Synergistic combination of targeted nano-nuclear-reactors and anti-PD-L1 nanobodies evokes persistent T cell immune activation for cancer immunotherapy.

J Nanobiotechnology. 2022-12-10

[8]
Progress of Nanomaterials in Photodynamic Therapy Against Tumor.

Front Bioeng Biotechnol. 2022-5-31

本文引用的文献

[1]
Single NIR Laser-Activated Multifunctional Nanoparticles for Cascaded Photothermal and Oxygen-Independent Photodynamic Therapy.

Nanomicro Lett. 2019-8-19

[2]
Co-Administration of iRGD with Sorafenib-Loaded Iron-Based Metal-Organic Framework as a Targeted Ferroptosis Agent for Liver Cancer Therapy.

Int J Nanomedicine. 2021

[3]
Targeting B7-H3 via chimeric antigen receptor T cells and bispecific killer cell engagers augments antitumor response of cytotoxic lymphocytes.

J Hematol Oncol. 2021-1-29

[4]
CD44-Targeting Oxygen Self-Sufficient Nanoparticles for Enhanced Photodynamic Therapy Against Malignant Melanoma.

Int J Nanomedicine. 2020

[5]
Multifunctional Nanotheranostic Gold Nanocage/Selenium Core-Shell for PAI-Guided Chemo-Photothermal Synergistic Therapy in vivo.

Int J Nanomedicine. 2020

[6]
NIR II-Excited and pH-Responsive Ultrasmall Nanoplatform for Deep Optical Tissue and Drug Delivery Penetration and Effective Cancer Chemophototherapy.

Mol Pharm. 2020-10-5

[7]
Glutathione-capped, renal-clearable CuS nanodots for photoacoustic imaging and photothermal therapy.

J Mater Chem B. 2017-8-21

[8]
Fusiform-Like Copper(II)-Based Metal-Organic Framework through Relief Hypoxia and GSH-Depletion Co-Enhanced Starvation and Chemodynamic Synergetic Cancer Therapy.

ACS Appl Mater Interfaces. 2020-4-15

[9]
A Multifunctional Cascade Bioreactor Based on Hollow-Structured Cu MoS for Synergetic Cancer Chemo-Dynamic Therapy/Starvation Therapy/Phototherapy/Immunotherapy with Remarkably Enhanced Efficacy.

Adv Mater. 2019-11-4

[10]
Targeting immune checkpoint B7-H3 antibody-chlorin e6 bioconjugates for spectroscopic photoacoustic imaging and photodynamic therapy.

Chem Commun (Camb). 2019-11-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索