Suppr超能文献

通过人机应用中协作智能标准提高数据质量的路线图。

A roadmap for improving data quality through standards for collaborative intelligence in human-robot applications.

作者信息

Mehak Shakra, Ramos Inês F, Sagar Keerthi, Ramasubramanian Aswin, Kelleher John D, Guilfoyle Michael, Gianini Gabriele, Damiani Ernesto, Leva Maria Chiara

机构信息

Pilz Ireland Industrial Automation, Cork, Ireland.

School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland.

出版信息

Front Robot AI. 2024 Dec 12;11:1434351. doi: 10.3389/frobt.2024.1434351. eCollection 2024.

Abstract

Collaborative intelligence (CI) involves human-machine interactions and is deemed safety-critical because their reliable interactions are crucial in preventing severe injuries and environmental damage. As these applications become increasingly data-driven, the reliability of CI applications depends on the quality of data, shaping the system's ability to interpret and respond in diverse and often unpredictable environments. In this regard, it is important to adhere to data quality standards and guidelines, thus facilitating the advancement of these collaborative systems in industry. This study presents the challenges of data quality in CI applications within industrial environments, with two use cases that focus on the collection of data in Human-Robot Interaction (HRI). The first use case involves a framework for quantifying human and robot performance within the context of naturalistic robot learning, wherein humans teach robots using intuitive programming methods within the domain of HRI. The second use case presents real-time user state monitoring for adaptive multi-modal teleoperation, that allows for a dynamic adaptation of the system's interface, interaction modality and automation level based on user needs. The article proposes a hybrid standardization derived from established data quality-related ISO standards and addresses the unique challenges associated with multi-modal HRI data acquisition. The use cases presented in this study were carried out as part of an EU-funded project, Collaborative Intelligence for Safety-Critical Systems (CISC).

摘要

协作智能(CI)涉及人机交互,因其可靠的交互对于防止严重伤害和环境破坏至关重要,所以被视为安全关键型。随着这些应用越来越以数据为驱动,CI应用的可靠性取决于数据质量,这决定了系统在多样且往往不可预测的环境中进行解释和响应的能力。在这方面,遵守数据质量标准和指南很重要,从而推动这些协作系统在行业中的发展。本研究呈现了工业环境中CI应用的数据质量挑战,并通过两个用例聚焦于人机交互(HRI)中的数据收集。第一个用例涉及一个在自然主义机器人学习背景下量化人类和机器人性能的框架,其中人类在HRI领域使用直观编程方法教导机器人。第二个用例展示了用于自适应多模态远程操作的实时用户状态监测,它允许根据用户需求动态调整系统的界面、交互方式和自动化水平。本文提出了一种源自既定数据质量相关ISO标准的混合标准化方法,并解决了与多模态HRI数据采集相关的独特挑战。本研究中呈现的用例是作为欧盟资助项目“安全关键系统协作智能”(CISC)的一部分开展的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b8d/11669550/01f9e761dcbf/frobt-11-1434351-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验