Suppr超能文献

人机交互中的错误及其对机器人学习的影响。

Errors in Human-Robot Interactions and Their Effects on Robot Learning.

作者信息

Kim Su Kyoung, Kirchner Elsa Andrea, Schloßmüller Lukas, Kirchner Frank

机构信息

Robotics Innovation Center, German Research Center for Artificial Intelligence (DFKI GmbH), Bremen, Germany.

Research Group Robotics, University of Bremen, Bremen, Germany.

出版信息

Front Robot AI. 2020 Oct 15;7:558531. doi: 10.3389/frobt.2020.558531. eCollection 2020.

Abstract

During human-robot interaction, errors will occur. Hence, understanding the effects of interaction errors and especially the effect of prior knowledge on robot learning performance is relevant to develop appropriate approaches for learning under natural interaction conditions, since future robots will continue to learn based on what they have already learned. In this study, we investigated interaction errors that occurred under two learning conditions, i.e., in the case that the robot learned without prior knowledge (cold-start learning) and in the case that the robot had prior knowledge (warm-start learning). In our human-robot interaction scenario, the robot learns to assign the correct action to a current human intention (gesture). Gestures were not predefined but the robot had to learn their meaning. We used a contextual-bandit approach to maximize the expected payoff by updating (a) the current human intention (gesture) and (b) the current human intrinsic feedback after each action selection of the robot. As an intrinsic evaluation of the robot behavior we used the error-related potential (ErrP) in the human electroencephalogram as reinforcement signal. Either gesture errors (human intentions) can be misinterpreted by incorrectly captured gestures or errors in the ErrP classification (human feedback) can occur. We investigated these two types of interaction errors and their effects on the learning process. Our results show that learning and its online adaptation was successful under both learning conditions (except for one subject in cold-start learning). Furthermore, warm-start learning achieved faster convergence, while cold-start learning was less affected by online changes in the current context.

摘要

在人机交互过程中,会出现错误。因此,了解交互错误的影响,尤其是先验知识对机器人学习性能的影响,对于开发在自然交互条件下学习的合适方法至关重要,因为未来的机器人将继续基于已学知识进行学习。在本研究中,我们调查了在两种学习条件下出现的交互错误,即机器人在没有先验知识的情况下学习(冷启动学习)和机器人有先验知识的情况下学习(热启动学习)。在我们的人机交互场景中,机器人学习为当前人类意图(手势)分配正确动作。手势不是预先定义的,而是机器人必须学习其含义。我们使用上下文博弈方法,通过在机器人每次动作选择后更新(a)当前人类意图(手势)和(b)当前人类内在反馈,来最大化预期收益。作为对机器人行为的内在评估,我们将人类脑电图中的错误相关电位(ErrP)用作强化信号。要么手势错误(人类意图)可能因错误捕获的手势而被误解,要么ErrP分类(人类反馈)中可能出现错误。我们研究了这两种类型的交互错误及其对学习过程的影响。我们的结果表明,在两种学习条件下学习及其在线适应都是成功的(冷启动学习中有一个受试者除外)。此外,热启动学习实现了更快的收敛,而冷启动学习受当前上下文在线变化的影响较小。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3eee/7805941/2bd8c3b267c7/frobt-07-558531-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验