Suppr超能文献

南非东开普省奥利弗·雷金纳德·坦博地区市的耐多药结核病热点地区

Drug-Resistant Tuberculosis Hotspots in Oliver Reginald Tambo District Municipality, Eastern Cape, South Africa.

作者信息

Faye Lindiwe Modest, Hosu Mojisola Clara, Apalata Teke

机构信息

Department of Laboratory Medicine and Pathology, Walter Sisulu University, Private Bag X5117, Mthatha 5099, South Africa.

出版信息

Infect Dis Rep. 2024 Dec 6;16(6):1197-1213. doi: 10.3390/idr16060095.

Abstract

BACKGROUND

The global push to eliminate tuberculosis (TB) as a public health threat is increasingly urgent, particularly in high-burden areas like the Oliver Reginald Tambo District Municipality, South Africa. Drug-resistant TB (DR-TB) poses a significant challenge to TB control efforts and is a leading cause of TB-related deaths. This study aimed to assess DR-TB transmission patterns and predict future cases using geospatial and predictive modeling techniques.

METHODS

A retrospective cross-sectional study was conducted across five decentralized DR-TB facilities in the O.R. Tambo District Municipality from January 2018 to December 2020. Data were obtained from Statistics South Africa, and patient GPS coordinates were used to identify clusters of DR-TB cases via DBSCAN clustering. Hotspot analysis (Getis-Ord Gi) was performed, and two predictive models (Linear Regression and Random Forest) were developed to estimate future DR-TB cases. Analyses were conducted using Python 3.8 and R 4.1.1, with significance set at < 0.05.

RESULTS

A total of 456 patients with DR-TB were enrolled, with 56.1% males and 43.9% females. The mean age was 37.5 (±14.9) years. The incidence of DR-TB was 11.89 cases per 100,000 population, with males being disproportionately affected. Key risk factors included poverty, lack of education, and occupational exposure. The DR-TB types included RR-TB (60%), MDR-TB (30%), Pre-XDR-TB (5%), XDR-TB (3%), and INHR-TB (2%). Spatial analysis revealed significant clustering in socio-economically disadvantaged areas. A major cluster was identified, along with a distinct outlier. The analyses of DR-TB case trends using historical data (2018-2021) and projections (2022-2026) from Linear Regression and Random Forest models reveal historical data with a sharp decline in DR-TB case, from 186 in 2018 to 15 in 2021, highlighting substantial progress. The Linear Regression model predicts a continued decline to zero cases by 2026, with an R = 0.865, a mean squared error (MSE) of 507.175, and a mean absolute error (MAE) of 18.65. Conversely, the Random Forest model forecasts stabilization to around 30-50 cases annually after 2021, achieving an R = 0.882, an MSE of 443.226, and an MAE of 19.03. These models underscore the importance of adaptive strategies to sustain progress and avoid plateauing in DR-TB reduction efforts.

CONCLUSIONS

This study highlights the need for targeted interventions in vulnerable populations to curb DR-TB transmission and improve treatment outcomes.

摘要

背景

将结核病(TB)作为公共卫生威胁加以消除的全球行动日益紧迫,在南非奥利弗·雷金纳德·坦博地区市等高负担地区尤为如此。耐多药结核病(DR-TB)对结核病控制工作构成重大挑战,是结核病相关死亡的主要原因。本研究旨在利用地理空间和预测建模技术评估耐多药结核病的传播模式并预测未来病例。

方法

2018年1月至2020年12月在奥利弗·雷金纳德·坦博地区市的五个分散的耐多药结核病治疗机构开展了一项回顾性横断面研究。数据取自南非统计局,利用患者的全球定位系统坐标通过DBSCAN聚类识别耐多药结核病例群。进行了热点分析(Getis-Ord Gi),并开发了两个预测模型(线性回归和随机森林)来估计未来的耐多药结核病例。使用Python 3.8和R 4.1.1进行分析,显著性设定为<0.05。

结果

共纳入456例耐多药结核患者,其中男性占56.1%,女性占43.9%。平均年龄为37.5(±14.9)岁。耐多药结核病发病率为每10万人11.89例,男性受影响程度不成比例。主要风险因素包括贫困、缺乏教育和职业暴露。耐多药结核类型包括利福平耐药结核病(RR-TB,60%)、耐多药结核病(MDR-TB,30%)、准广泛耐药结核病(Pre-XDR-TB,5%)、广泛耐药结核病(XDR-TB,3%)和异烟肼耐药结核病(INHR-TB,2%)。空间分析显示在社会经济弱势地区有显著聚类。识别出一个主要聚类以及一个明显的离群值。利用线性回归和随机森林模型对耐多药结核病例趋势进行的历史数据(2018 - 2021年)分析和预测(2022 - 2026年)显示,历史数据中耐多药结核病例急剧下降,从2018年的186例降至2021年的15例,突出了显著进展。线性回归模型预测到2026年病例将持续下降至零,R = 0.865,均方误差(MSE)为507.175,平均绝对误差(MAE)为18.65。相反,随机森林模型预测2021年后病例将稳定在每年约30 - 50例,R = 0.882,MSE为443.226,MAE为19.03。这些模型强调了采取适应性策略以维持进展并避免耐多药结核病减少工作停滞的重要性。

结论

本研究强调需要对弱势群体采取有针对性的干预措施,以遏制耐多药结核病传播并改善治疗效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e758/11675276/f5dd0ba135d9/idr-16-00095-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验