Lee Dongwoo, Islam Md Ataul, Natarajan Sathishkumar, Dudekula Dawood Babu, Chung Hoyong, Park Junhyung, Oh Bermseok
Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
3BIGS Co., Ltd., B-831, Geumgang Penterium IX Tower, Hwaseong 18469, Republic of Korea.
Trop Med Infect Dis. 2024 Nov 25;9(12):288. doi: 10.3390/tropicalmed9120288.
Tuberculosis (TB) is a global health challenge associated with considerable levels of illness and mortality worldwide. The development of innovative therapeutic strategies is crucial to combat the rise of drug-resistant TB strains. DNA Gyrase A (GyrA) and serine/threonine protein kinase (PknB) are promising targets for new TB medications. This study employed techniques such as similarity searches, molecular docking analyses, machine learning (ML)-driven absolute binding-free energy calculations, and molecular dynamics (MD) simulations to find potential drug candidates. By combining ligand- and structure-based methods with ML principles and MD simulations, a novel strategy was proposed for identifying small molecules. Drugs with structural similarities to existing TB therapies were assessed for their binding affinity to GyrA and PknB through various docking approaches and ML-based predictions. A detailed analysis identified six promising compounds for each target, such as DB00199, DB01220, DB06827, DB11753, DB14631, and DB14703 for GyrA; and DB00547, DB00615, DB06827, DB14644, DB11753, and DB14703 for PknB. Notably, DB11753 and DB14703 show significant potential for both targets. Furthermore, MD simulations' statistical metrics confirm the drug-target complexes' stability, with MM-GBSA analyses underscoring their strong binding affinity, indicating their promise for TB treatment even though they were not initially designed for this disease.
结核病(TB)是一项全球性的健康挑战,在全球范围内导致了相当高的发病率和死亡率。开发创新的治疗策略对于应对耐药结核菌株的增加至关重要。DNA促旋酶A(GyrA)和丝氨酸/苏氨酸蛋白激酶(PknB)是新型抗结核药物有前景的靶点。本研究采用了相似性搜索、分子对接分析、机器学习(ML)驱动的绝对结合自由能计算和分子动力学(MD)模拟等技术来寻找潜在的药物候选物。通过将基于配体和结构的方法与ML原理和MD模拟相结合,提出了一种识别小分子的新策略。通过各种对接方法和基于ML的预测,评估了与现有抗结核疗法结构相似的药物对GyrA和PknB的结合亲和力。详细分析为每个靶点确定了六种有前景的化合物,例如针对GyrA的DB00199、DB01220、DB06827、DB11753、DB14631和DB14703;以及针对PknB的DB00547、DB00615、DB06827、DB14644、DB11753和DB14703。值得注意的是,DB11753和DB14703对两个靶点都显示出显著的潜力。此外,MD模拟的统计指标证实了药物-靶点复合物的稳定性,MM-GBSA分析强调了它们的强结合亲和力,表明它们即使最初不是为治疗这种疾病而设计的,但对于结核病治疗也有前景。