Suppr超能文献

整合肿瘤和淋巴结影像组学特征以预测局部晚期食管鳞状细胞癌新辅助化疗及根治性切除术后的无病生存期。

Integrating tumour and lymph node radiomics features for predicting disease-free survival in locally advanced esophageal squamous cell cancer after neoadjuvant chemotherapy and complete resection.

作者信息

Zhao Bo, Wang Ya-Qi, Zhu Hai-Tao, Li Xiao-Ting, Shi Yan-Jie, Sun Ying-Shi

机构信息

Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.

Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, 100142, China.

出版信息

Eur J Surg Oncol. 2025 Mar;51(3):109547. doi: 10.1016/j.ejso.2024.109547. Epub 2024 Dec 12.

Abstract

PURPOSE

To investigate the utility of combined tumour and lymph node (LN) radiomics features in predicting disease-free survival (DFS) among patients with locally advanced esophageal squamous cell carcinoma (ESCC) after neoadjuvant chemotherapy and resection.

METHODS

We retrospectively enrolled 176 ESCC patients from January 2013 to December 2016. Tumour and targeted LN segmentation were performed on venous phase CT images. Models were constructed using LASSO Cox regression: a clinical model, a clinical-tumour radiomics model, and a clinical-tumour-LN radiomics model. Model fitting was evaluated using Akaike information criterion and likelihood ratio (LR), while performance was assessed using Harrell's concordance index (C-index) and time-dependent receiver operating characteristic analysis.

RESULTS

The clinical model included clinical stage and neutrophil-to-lymphocyte ratio (NLR). Integration of tumour features significantly improved prognostic accuracy (clinical-tumour model vs. clinical model, LR: 17.84 vs. 11.84, P = 0.049). Subsequent integration of LN features further augmented model performance (clinical-tumour-LN model vs. clinical-tumour model, LR: 24.48 vs. 17.84, P = 0.009). The final model included clinical stage, NLR, two tumour features (Conventional_mean and GLZLM_HGZE), and one LN feature (GLCM_entropy). The C-index was 0.68 for the training set and 0.70 for the test set. The nomogram based on these features effectively stratified patients into high- and low-risk groups (P < 0.001).

CONCLUSIONS

The clinical-tumour-LN model, integrating clinical stage, NLR, and radiomics features, outperformed simpler models in predicting DFS among ESCC patients after neoadjuvant chemotherapy and resection. This underscores the potential of radiomics data to enhance prognostic models, offering clinicians a more robust tool for assessment.

摘要

目的

探讨联合肿瘤和淋巴结(LN)的放射组学特征在预测局部晚期食管鳞状细胞癌(ESCC)患者新辅助化疗及切除术后无病生存期(DFS)中的应用价值。

方法

我们回顾性纳入了2013年1月至2016年12月期间的176例ESCC患者。在静脉期CT图像上进行肿瘤和靶向淋巴结分割。使用LASSO Cox回归构建模型:临床模型、临床-肿瘤放射组学模型和临床-肿瘤-LN放射组学模型。使用赤池信息准则和似然比(LR)评估模型拟合情况,同时使用Harrell一致性指数(C指数)和时间依赖性受试者工作特征分析评估模型性能。

结果

临床模型包括临床分期和中性粒细胞与淋巴细胞比值(NLR)。肿瘤特征的整合显著提高了预后准确性(临床-肿瘤模型与临床模型,LR:17.84对11.84,P = 0.049)。随后LN特征的整合进一步提高了模型性能(临床-肿瘤-LN模型与临床-肿瘤模型,LR:24.传8对17.84,P = 0.009)。最终模型包括临床分期、NLR、两个肿瘤特征(传统均值和GLZLM_HGZE)和一个LN特征(GLCM熵)。训练集的C指数为0.68,测试集的C指数为0.70。基于这些特征的列线图有效地将患者分为高风险和低风险组(P < 0.001)。

结论

整合临床分期、NLR和放射组学特征的临床-肿瘤-LN模型在预测新辅助化疗及切除术后ESCC患者的DFS方面优于更简单的模型。这凸显了放射组学数据在增强预后模型方面的潜力,为临床医生提供了一个更强大的评估工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验