Suppr超能文献

组蛋白H3.3 K27M突变抑制Ser31磷酸化和有丝分裂保真度,这可直接驱动胶质瘤发生。

The histone H3.3 K27M mutation suppresses Ser31phosphorylation and mitotic fidelity, which can directly drive gliomagenesis.

作者信息

Day Charles A, Grigore Florina, Hakkim Faruck L, Paul Souren, Langfald Alyssa, Weberg Molly, Fadness Sela, Schwab Paiton, Sepaniac Leslie, Stumpff Jason, Vaughan Kevin T, Daniels David J, Robinson James P, Hinchcliffe Edward H

机构信息

The Hormel Institute, University of Minnesota, Austin, MN 55912, USA; Neuro-Oncology Training Program, Mayo Clinic, Rochester, MN 55905, USA.

The Hormel Institute, University of Minnesota, Austin, MN 55912, USA; Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA.

出版信息

Curr Biol. 2025 Jan 20;35(2):354-362.e7. doi: 10.1016/j.cub.2024.11.035. Epub 2024 Dec 26.

Abstract

Serine 31 is a phospho-site unique to the histone H3.3 variant; mitotic phospho-Ser31 is restricted to pericentromeric heterochromatin, and disruption of phospho-Ser31 results in chromosome segregation defects and loss of p53-dependant G cell-cycle arrest. Ser31 is proximal to the H3.3 lysine 27-to-methionine (K27M) mutation that drives ∼80% of pediatric diffuse midline gliomas. Here, we show that expression of the H3.3 K27M mutant in normal, diploid cells results in increased chromosome missegregation and failure to arrest in the following G. Expression of a non-phosphorylatable S31A mutant also drives chromosome missegregation, while the expression of a double K27M + phosphomimetic S31E mutant restores mitotic fidelity and the p53 response to chromosome missegregation. We show that patient-derived H3.3 K27M tumor cells have decreased mitotic Ser31 phosphorylation and increased frequency of chromosome missegregation. CRISPR reversion of the K27M mutation to wild type (WT) restores phospho-Ser31 levels and results in a decrease in chromosome missegregation. However, inserting an S31A mutation by CRISPR into these revertant cells disrupts mitotic fidelity. In vitro and in vivo analyses reveal that Chk1-the mitotic Ser31 kinase-is preferentially retained at pericentromeres in K27M-expressing tumor cells, compared with MLysine27-to-methionine mutation (M27K) isogenic revertants, correlating with both diminished phospho-Ser31 and mitotic defects. Interestingly, whereas M27K revertant cells do not form xenograft tumors in mice, H3.3 S31A cells do, similar to those formed by H3.3 K27M cells. Replication-competent avian leukosis virus splice-acceptor (RCAS)/cellular receptor for subgroup A avian sarcoma and leukosis virus (TVA) mice expressing S31A also form diffuse midline gliomas morphologically indistinguishable from K27M tumors. Together, our results reveal that the H3.3 K27M mutant alters H3.3 Ser31 phosphorylation, which, in turn, has profound impacts on chromosome segregation/cell-cycle regulation.

摘要

丝氨酸31是组蛋白H3.3变体特有的磷酸化位点;有丝分裂期磷酸化的丝氨酸31局限于着丝粒周围的异染色质,丝氨酸31磷酸化的破坏会导致染色体分离缺陷以及p53依赖的G期细胞周期停滞丧失。丝氨酸31靠近驱动约80%儿童弥漫性中线胶质瘤的H3.3赖氨酸27到甲硫氨酸(K27M)突变。在此,我们表明,在正常二倍体细胞中表达H3.3 K27M突变体导致染色体错分离增加,且无法在随后的G期停滞。非磷酸化的S31A突变体的表达也会驱动染色体错分离,而双突变体K27M + 模拟磷酸化的S31E突变体的表达可恢复有丝分裂保真度以及p53对染色体错分离的反应。我们发现,源自患者的H3.3 K27M肿瘤细胞有丝分裂期丝氨酸31磷酸化水平降低,染色体错分离频率增加。通过CRISPR将K27M突变回复为野生型(WT)可恢复丝氨酸31磷酸化水平,并导致染色体错分离减少。然而,通过CRISPR在这些回复细胞中插入S31A突变会破坏有丝分裂保真度。体外和体内分析表明,与赖氨酸27到甲硫氨酸突变(M27K)同基因回复体相比,有丝分裂期丝氨酸31激酶Chk1在表达K27M的肿瘤细胞的着丝粒处优先保留,这与丝氨酸31磷酸化减少和有丝分裂缺陷相关。有趣的是,虽然M27K回复细胞在小鼠中不形成异种移植肿瘤,但H3.3 S31A细胞会形成,类似于H3.3 K27M细胞形成的肿瘤。表达S31A的具有复制能力的禽白血病病毒剪接受体(RCAS)/A亚群禽肉瘤和白血病病毒细胞受体(TVA)小鼠也会形成形态上与K27M肿瘤无法区分的弥漫性中线胶质瘤。总之,我们的结果表明,H3.3 K27M突变体改变了H3.3丝氨酸31磷酸化,进而对染色体分离/细胞周期调控产生深远影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验