Balasubramanian C, Sathya G, Praveen R
Department of Computer Science and Engineering, P.S.R. Engineering College, Sivakasi, Tamil Nadu, 626140, India.
Department of Electronics and Communication Engineering, P.S.R.R College of Engineering, Sivakasi, Tamil Nadu, 626140, India.
Sci Rep. 2024 Dec 28;14(1):31102. doi: 10.1038/s41598-024-82311-z.
In clustered cognitive radio sensor networks (CRSNs), availability of free channels, spectrum sensing and energy utilization during clustering and cluster head (CH) selection is essential for fairness of time and event-driven data traffic. The existing multi-hop routing protocols in CRSNs generally adopt a perfect spectrum sensing which is not same in the practical spectrum sensing of nodes in real networks. High imbalance in residual energy between the selected CHs negatively impacts the delivery of data packets. Hence, hybrid mexican axolotl and bitterling fish optimization algorithm-based spectrum sensing multi-hop clustering routing protocol (HMABFOA) is proposed as an imperfect spectrum sensing approach for achieving better utilization of downlink energy harvesting and sustain maximized degree of energy between the nodes in the network. This HMABFOA scheme reduces the negative impact of imperfect spectrum sensing for extended network lifetime which sustains the capabilities of the network surveillance. It helped in constructing a distributed cluster with multi-hop routing selection between clusters depending on a energy level function that explores and exploits the factors associated with CHs selection. The merits of Mexican axolotl optimization algorithm (MAOA) is used for better CH selection and cluster formation with energy stability is sustained in the network. Further bitterling fish optimization (BFOA) algorithm is used for optimized multi-hop route between the clusters with minimal energy consumption and maximized spectrum sensing that proves better channels availability. The simulation results guaranteed maximized network lifetime of 24.38%, spectrum utilization rate of 24.58%, and minimized energy utilization of 25.62%, better than the baseline approaches.
在集群认知无线电传感器网络(CRSN)中,在聚类和簇头(CH)选择期间,可用空闲信道的可用性、频谱感知和能量利用对于时间和事件驱动数据流量的公平性至关重要。CRSN中现有的多跳路由协议通常采用完美频谱感知,这与实际网络中节点的实际频谱感知不同。所选簇头之间的剩余能量高度不平衡会对数据包的传输产生负面影响。因此,提出了基于混合美西螈和麦穗鱼优化算法的频谱感知多跳聚类路由协议(HMABFOA),作为一种不完美频谱感知方法,以实现对下行链路能量收集的更好利用,并维持网络中节点之间的最大能量程度。这种HMABFOA方案减少了不完美频谱感知对延长网络寿命的负面影响,从而维持了网络监测的能力。它有助于构建一个分布式簇,根据探索和利用与簇头选择相关因素的能量水平函数在簇之间进行多跳路由选择。美西螈优化算法(MAOA)的优点用于更好地选择簇头和形成簇,并在网络中维持能量稳定性。此外,麦穗鱼优化(BFOA)算法用于在簇之间进行优化的多跳路由,能耗最小且频谱感知最大化,从而证明更好的信道可用性。仿真结果保证了网络寿命最大化24.38%、频谱利用率最大化24.58%以及能量利用率最小化25.62%,优于基线方法。