Baskar R, Mohanraj E
Department of Computer Science and Engineering, K. S. Rangasamy College of Technology, Tiruchengode, Namakkal, 637 215, Tamil Nadu, India.
Department of Artificial Intelligence and Data Science, K. S. Rangasamy College of Technology, Tiruchengode, Namakkal, 637 215, Tamil Nadu, India.
Sci Rep. 2025 May 7;15(1):15953. doi: 10.1038/s41598-025-00597-z.
The Internet of Things (IoT) has boosted fog computing, which complements the cloud. This is critical for applications that need close user proximity. Efficient allocation of IoT applications to the fog, as well as fog device scheduling, enabling the realistic execution of IoT application deployment in the fog environment. The scheduling difficulties are multi-objective in nature, since they must handle the issues of avoiding resource waste, network latency, and maximising Quality of Service (QoS) on fog nodes. In this research, the Hybrid Multi-Objective Marine Predators Algorithm-based Clustering and Fog Picker (HMMPACFP) Technique is developed as a combinatorial model for tackling the problem of fog node allocation, with the goal of achieving dynamic scheduling using lightweight characteristics. Utilised Fog Picker to allocate IoT components to fog nodes based on QoS parameters. Simulation trials of the proposed HMMPACFP scheme utilising iMetal and iFogSim with Hypervolume (HV) and Generational Distance (IGD) demonstrated its superiority over the benchmarked methodologies utilised for evaluation. The combination of Fog Picker with the suggested HMMPACFP scheme resulted in 32.18% faster convergence, 26.92% more solution variety, and a better balance between exploration and exploitation rates.
物联网(IoT)推动了雾计算的发展,雾计算是对云计算的补充。这对于需要用户近距离操作的应用至关重要。将物联网应用高效分配到雾中,以及雾设备调度,能够在雾环境中实际执行物联网应用部署。调度难题本质上是多目标的,因为它们必须处理避免资源浪费、网络延迟以及最大化雾节点上的服务质量(QoS)等问题。在本研究中,基于混合多目标海洋捕食者算法的聚类与雾选择器(HMMPACFP)技术被开发为一种组合模型,用于解决雾节点分配问题,目标是利用轻量级特性实现动态调度。利用雾选择器根据QoS参数将物联网组件分配到雾节点。使用iMetal和iFogSim以及超体积(HV)和世代距离(IGD)对所提出的HMMPACFP方案进行的模拟试验表明,其优于用于评估的基准方法。雾选择器与所提出的HMMPACFP方案相结合,收敛速度提高了32.18%,解的多样性增加了26.92%,并且在探索率和开发率之间实现了更好的平衡。