Yin Jinpeng, Wang Guanqin, Kong Dongqing, Li Chuang, Zhang Qiang, Xie Dongbai, Yan Yangyang, Li Ning, Li Qiang
Shandong Engineering Research Center of Green and High-value Marine Fine Chemical, Weifang University of Science and Technology, Shouguang, 262700, People's Republic of China.
Sci Rep. 2024 Dec 28;14(1):31029. doi: 10.1038/s41598-024-82179-z.
To enhance the volumetric energy density and initial coulombic efficiency (ICE) of titanium oxide (TiO) as anode electrode material for lithium-ion batteries (LIB), this study employed a surface-confined in-situ inter-growth mechanism to prepare a TiO embedded carbon microsphere composite. The results revealed that the composite exhibited a highly integrated structure of TiO with oxygen vacancies and carbon, along with an exceptionally small specific surface area of 11.52 m/g. Due to its unique microstructure, the composite demonstrated remarkable lithium storage properties, including a high ICE of 75%, a notable capacity of 426.8 mAh/g after 200 cycles at 0.2 A/g, superior rate performance of 210.1 mAh/g at 5 A/g, and an outstanding cycle life, with a capacity decay rate of only 0.003% per cycle over 2000 cycles. Furthermore, electrochemical kinetic studies further validated the advantages of this microstructure.
为提高作为锂离子电池(LIB)阳极电极材料的氧化钛(TiO)的体积能量密度和初始库仑效率(ICE),本研究采用表面受限原位共生机制制备了TiO嵌入碳微球复合材料。结果表明,该复合材料呈现出TiO与氧空位和碳高度整合的结构,以及仅为11.52 m²/g的极小比表面积。由于其独特的微观结构,该复合材料表现出显著的锂存储性能,包括75%的高ICE、在0.2 A/g下循环200次后426.8 mAh/g的显著容量、在5 A/g下210.1 mAh/g的优异倍率性能以及出色的循环寿命,在2000次循环中容量衰减率仅为每循环0.003%。此外,电化学动力学研究进一步验证了这种微观结构的优势。