Yang Jian, Li Song, Zeng Ji, Yang Zhaozhong, Li Xiaogang, He Tingting, Yi Liangping, Kong Bing
Egineering Research Institute of Petrochina Southwest Oil and Gas Field Company, Chengdu, 610017, China.
National Energy High-sour Gas Reservoir Exploitation and R & D Center, Guanghan, 618300, China.
Sci Rep. 2024 Dec 28;14(1):31133. doi: 10.1038/s41598-024-82454-z.
Unconventional gas reservoirs, characterized by their complex geologies and challenging extraction conditions, demand innovative approaches to enhance gas production and ensure economic viability. Well stimulation techniques, such as hydraulic fracturing and acidizing, have become indispensable tools in unlocking the potential of these tight formations. However, the effectiveness of these techniques can vary widely depending on the specific characteristics of the reservoir. In this context, a data-driven approach to assess well stimulation practices offers a promising avenue to optimize recovery processes and reduce uncertainties. This paper presents a comprehensive study that leverages the power of big data analytics and machine learning to analyze and improve well stimulation strategies in unconventional gas reservoirs. By systematically gathering and processing vast arrays of geological, operational, and production data, this study aims to identify patterns and correlations that can predict stimulation outcomes more accurately. The ultimate goal is to develop a robust framework that allows for tailored stimulation designs based on the unique properties of each reservoir, thereby maximizing efficiency and minimizing environmental impacts. This study introduces a new procedure for assessing well stimulation performance, which involves analyzing the EUR through Duong's model, calculating the key performance indicator of the treatment, and establishing a data-driven model to predict the treatment KPI.
非常规气藏具有复杂的地质条件和具有挑战性的开采环境,需要创新方法来提高天然气产量并确保经济可行性。水力压裂和酸化等油井增产技术已成为释放这些致密地层潜力不可或缺的工具。然而,这些技术的有效性会因储层的具体特征而有很大差异。在这种情况下,采用数据驱动的方法来评估油井增产措施为优化采收过程和减少不确定性提供了一条很有前景的途径。本文介绍了一项全面研究,该研究利用大数据分析和机器学习的力量来分析和改进非常规气藏的油井增产策略。通过系统地收集和处理大量地质、作业和生产数据,本研究旨在识别能够更准确预测增产效果的模式和相关性。最终目标是建立一个强大的框架,能够根据每个储层的独特特性进行定制化增产设计,从而实现效率最大化并将环境影响降至最低。本研究引入了一种评估油井增产性能的新程序,该程序包括通过Duong模型分析最终采收量、计算增产措施的关键性能指标,以及建立一个数据驱动的模型来预测增产措施的关键性能指标。