Suppr超能文献

基因组规模建模揭示上皮-间质转化过程中的动态代谢脆弱性。

Genome-scale modeling identifies dynamic metabolic vulnerabilities during the epithelial to mesenchymal transition.

作者信息

Bhowmick Rupa, Campit Scott, Katkam Shiva Krishna, Keshamouni Venkateshwar G, Chandrasekaran Sriram

机构信息

Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.

Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA.

出版信息

Commun Biol. 2024 Dec 27;7(1):1704. doi: 10.1038/s42003-024-07408-7.

Abstract

Epithelial-to-mesenchymal transition (EMT) is a conserved cellular process critical for embryogenesis, wound healing, and cancer metastasis. During EMT, cells undergo large-scale metabolic reprogramming that supports multiple functional phenotypes including migration, invasion, survival, chemo-resistance and stemness. However, the extent of metabolic network rewiring during EMT is unclear. In this work, using genome-scale metabolic modeling, we perform a meta-analysis of time-course transcriptomics, time-course proteomics, and single-cell transcriptomics EMT datasets from cell culture models stimulated with TGF-β. We uncovered temporal metabolic dependencies in glycolysis and glutamine metabolism, and experimentally validated isoform-specific dependency on Enolase3 for cell survival during EMT. We derived a prioritized list of metabolic dependencies based on model predictions, literature mining, and CRISPR-Cas9 essentiality screens. Notably, enolase and triose phosphate isomerase reaction fluxes significantly correlate with survival of lung adenocarcinoma patients. Our study illustrates how integration of heterogeneous datasets using a mechanistic computational model can uncover temporal and cell-state-specific metabolic dependencies.

摘要

上皮-间质转化(EMT)是一种保守的细胞过程,对胚胎发育、伤口愈合和癌症转移至关重要。在EMT过程中,细胞经历大规模的代谢重编程,以支持多种功能表型,包括迁移、侵袭、存活、化疗耐药性和干性。然而,EMT过程中代谢网络重新布线的程度尚不清楚。在这项工作中,我们使用基因组规模的代谢模型,对来自用TGF-β刺激的细胞培养模型的时间进程转录组学、时间进程蛋白质组学和单细胞转录组学EMT数据集进行了荟萃分析。我们揭示了糖酵解和谷氨酰胺代谢中的时间代谢依赖性,并通过实验验证了EMT过程中细胞存活对烯醇化酶3的异构体特异性依赖性。我们基于模型预测、文献挖掘和CRISPR-Cas9必需性筛选得出了一份代谢依赖性的优先列表。值得注意的是,烯醇化酶和磷酸丙糖异构酶反应通量与肺腺癌患者的生存率显著相关。我们的研究说明了如何使用机械计算模型整合异质数据集,以揭示时间和细胞状态特异性的代谢依赖性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec8f/11681178/bcafabd3b228/42003_2024_7408_Fig2_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验