Suppr超能文献

谷氨酸棒杆菌的代谢工程用于高水平生产1,5-戊二醇,一种C5二元醇平台化学品。

Metabolic Engineering of Corynebacterium glutamicum for High-Level Production of 1,5-Pentanediol, a C5 Diol Platform Chemical.

作者信息

Sohn Yu Jung, Hwang Se-Yeun, Lee Haeyoung, Jeon Subeen, Park Ji Young, Kim Jaehyung, Kim Donghyuk, Jeong Ki Jun, Lee Sang Yup, Joo Jeong Chan, Park Jin-Byung, Park Si Jae

机构信息

Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea.

Department of Food Science and Biotechnology, Ewha Womans University, Seoul, 03760, Republic of Korea.

出版信息

Adv Sci (Weinh). 2025 Apr;12(13):e2412670. doi: 10.1002/advs.202412670. Epub 2024 Dec 27.

Abstract

The biobased production of chemicals is essential for advancing a sustainable chemical industry. 1,5-Pentanediol (1,5-PDO), a five-carbon diol with considerable industrial relevance, has shown limited microbial production efficiency until now. This study presents the development and optimization of a microbial system to produce 1,5-PDO from glucose in Corynebacterium glutamicum via the l-lysine-derived pathway. Engineering began with creating a strain capable of producing 5-hydroxyvaleric acid (5-HV), a key precursor to 1,5-PDO, by incorporating enzymes from Pseudomonas putida (DavB, DavA, and DavT) and Escherichia coli (YahK). Two conversion pathways for further converting 5-HV to 1,5-PDO are evaluated, with the CoA-independent pathway-utilizing Mycobacterium marinum carboxylic acid reductase (CAR) and E. coli YqhD-proving greater efficiency. Further optimization continues with chromosomal integration of the 5-HV module, increasing 1,5-PDO production to 5.48 g L. An additional screening of 13 CARs identifies Mycobacterium avium K-10 (MAP1040) as the most effective, and its engineered M296E mutant further increases production to 23.5 g L. A deep-learning analysis reveals that Gluconobacter oxydans GOX1801 resolves the limitations of NADPH, allowing the final strain to produce 43.4 g L 1,5-PDO without 5-HV accumulation in fed-batch fermentation. This study demonstrates systematic approaches to optimizing microbial biosynthesis, positioning C. glutamicum as a promising platform for sustainable 1,5-PDO production.

摘要

生物基化学品的生产对于推动可持续化学工业发展至关重要。1,5 - 戊二醇(1,5 - PDO)是一种具有重要工业意义的五碳二醇,到目前为止,其微生物生产效率一直有限。本研究介绍了一种微生物系统的开发与优化,该系统可通过源自L - 赖氨酸的途径,利用谷氨酸棒杆菌从葡萄糖生产1,5 - PDO。工程改造始于创建一种能够通过整合恶臭假单胞菌(DavB、DavA和DavT)和大肠杆菌(YahK)的酶来生产5 - 羟基戊酸(5 - HV)的菌株,5 - 羟基戊酸是1,5 - PDO的关键前体。评估了将5 - HV进一步转化为1,5 - PDO的两条转化途径,结果表明利用海分枝杆菌羧酸还原酶(CAR)和大肠杆菌YqhD的不依赖辅酶A的途径效率更高。通过对5 - HV模块进行染色体整合继续进一步优化,将1,5 - PDO产量提高到5.48 g/L。对13种CAR的额外筛选确定鸟分枝杆菌K - 10(MAP1040)是最有效的,其工程化的M296E突变体进一步将产量提高到23.5 g/L。深度学习分析表明,氧化葡萄糖酸杆菌GOX1801解决了NADPH的限制,使最终菌株在补料分批发酵中能够生产43.4 g/L的1,5 - PDO且无5 - HV积累。本研究展示了优化微生物生物合成的系统方法,将谷氨酸棒杆菌定位为可持续生产1,5 - PDO的有前景的平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b9a/11967857/b47918c08a68/ADVS-12-2412670-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验