Högberg Peter, Klatt Christian, Franklin Oskar, Henriksson Nils, Lim Hyungwoo, Inselsbacher Erich, Hurry Vaughan, Näsholm Torgny, Högberg Mona N
Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, SE-901 83 Umeå, Sweden.
Department of Natural Resources, Dakota County Parks, 14955 Galaxie Avenue, Apple Valley, MN 55124, USA.
Tree Physiol. 2025 Jan 25;45(1). doi: 10.1093/treephys/tpae169.
Isotopic pulse-labelling of photosynthate allows tracing of carbon (C) from tree canopies to below-ground biota and calculations of its turnover in roots and recipient soil microorganisms. A high concentration of label is desirable but is difficult to achieve in field studies of intact ecosystem patches with trees. Moreover, root systems of trees overlap considerably in most forests, which requires a large labelled area to minimize the impact of C allocated below-ground by un-labelled trees. We describe a method which combines a high level of labelling at ambient concentrations of CO2, [CO2], with undisturbed root systems and a model to account for root C and root-derived C from un-labelled trees. We raised 5-m-tall chambers, each covering 50 m2 of ground (volume 250 m3) in a young boreal Pinus sylvestris L. forest with up to 5 m tall trees. Rather than a conventional single release of 13CO2, we used five consecutive releases, each followed by a draw-down period, thus avoiding high [CO2]. Hence, we elevated successively the 13CO2 from 1.1 to 23 atom% after the first release to 61 atom% after the fifth, while maintaining [CO2] below 500 p.p.m. during 4-4.5 h of labelling. The average abundance of 13CO2 was as high as 42 atom%. We used the central 10 m2 of the 50 m2 area for sampling of roots and other soil biota. We modelled the dilution of labelled C across the plots by un-labelled C from roots of trees outside the area. In the central 10 m2 area, ~85% of roots and root-associated biota received C from labelled trees. In summary, we elevated the labelling of roots and associated soil biota four-fold compared with previous studies and described the commonly overlooked impact of roots from un-labelled trees outside the labelled area.
光合产物的同位素脉冲标记能够追踪碳(C)从树冠到地下生物群的过程,并计算其在根系和接受碳的土壤微生物中的周转情况。虽然高浓度的标记物是理想的,但在对有树木的完整生态系统斑块进行实地研究时却很难实现。此外,在大多数森林中,树木的根系有相当大的重叠,这就需要大面积的标记区域,以尽量减少未标记树木向地下分配碳的影响。我们描述了一种方法,该方法将在环境二氧化碳浓度([CO₂])下的高水平标记与未受干扰的根系相结合,并使用一个模型来计算来自未标记树木的根系碳和根系衍生碳。我们在一片年轻的北方樟子松林中搭建了5米高的气室,每个气室覆盖50平方米的地面(体积250立方米),林中树木高达5米。我们不是像传统那样单次释放¹³CO₂,而是连续进行了五次释放,每次释放后都有一个下降期,从而避免了高[CO₂]浓度。因此,在第一次释放后,我们将¹³CO₂浓度从1.1原子%逐步提高到第五次释放后的61原子%,同时在4 - 4.5小时的标记过程中,将[CO₂]浓度保持在500 ppm以下。¹³CO₂的平均丰度高达42原子%。我们使用50平方米区域的中央10平方米来采集根系和其他土壤生物样本。我们通过该区域外树木根系的未标记碳对标记碳在样地中的稀释情况进行了建模。在中央10平方米区域,约85%的根系和与根系相关的生物群接受了来自标记树木的碳。总之,与之前的研究相比,我们将根系和相关土壤生物群的标记提高了四倍,并描述了标记区域外未标记树木根系通常被忽视的影响。