Suppr超能文献

用于预测室内伽马射线剂量率的机器学习技术——优势、劣势及对流行病学的影响

Machine learning techniques for the prediction of indoor gamma-ray dose rates - Strengths, weaknesses and implications for epidemiology.

作者信息

Kendall G M, Appleton J D, Chernyavskiy P, Arsham A, Little M P

机构信息

Cancer Epidemiology Unit, NDPH, University of Oxford, Richard Doll Building, Old Road Campus, Headington, Oxford, OX3 7LF, UK.

British Geological Survey, Kingsley Dunham Centre, Nicker Hill, Keyworth, Nottingham, NG12 5GG, UK.

出版信息

J Environ Radioact. 2025 Feb;282:107595. doi: 10.1016/j.jenvrad.2024.107595. Epub 2024 Dec 27.

Abstract

We investigate methods that improve the estimation of indoor gamma ray dose rates at locations where measurements had not been made. These new predictions use a greater range of modelling techniques and larger variety of explanatory variables than our previous examinations of this subject. Specifically, we now employ three types of machine learning models in addition to the geostatistical, nearest neighbour and other earlier models. A large number of parameters, mostly describing the characteristics of dwellings in the area in question, have been added to the set of explanatory variables. The use of machine learning methods results in significantly improved predictions over earlier models. The machine learning models are noisy and there is some instability in the relative importance of particular explanatory variables although there are general and consistent tendencies supporting the importance of certain classes of variable. However, the range of predicted indoor gamma ray dose rates is much smaller than that of the measurements. It is probable that epidemiological studies using such predictions will have lower statistical power than those based on direct measurements.

摘要

我们研究了在未进行测量的地点改进室内伽马射线剂量率估算的方法。与我们之前对该主题的研究相比,这些新的预测使用了更广泛的建模技术和更多种类的解释变量。具体而言,除了地质统计、最近邻和其他早期模型之外,我们现在还采用了三种类型的机器学习模型。大量参数(大多描述相关区域内住宅的特征)已被添加到解释变量集中。与早期模型相比,机器学习方法的使用使得预测有了显著改进。机器学习模型存在噪声,特定解释变量的相对重要性存在一些不稳定性,尽管存在支持某些变量类重要性的一般且一致的趋势。然而,预测的室内伽马射线剂量率范围比测量值的范围小得多。使用此类预测的流行病学研究的统计效力可能低于基于直接测量的研究。

相似文献

1
Machine learning techniques for the prediction of indoor gamma-ray dose rates - Strengths, weaknesses and implications for epidemiology.
J Environ Radioact. 2025 Feb;282:107595. doi: 10.1016/j.jenvrad.2024.107595. Epub 2024 Dec 27.
2
Indoor Gamma Dose Rates In Kuwait Using Handheld Gamma-ray Spectrometer.
Health Phys. 2016 Jul;111(1):11-6. doi: 10.1097/HP.0000000000000510.
3
Assessment of annual effective dose due to natural gamma radiation in Zanjan (Iran).
Radiat Prot Dosimetry. 2008;132(3):346-9. doi: 10.1093/rpd/ncn285. Epub 2008 Nov 5.
4
Indoor and outdoor in situ high-resolution gamma radiation measurements in urban areas of Cyprus.
Radiat Prot Dosimetry. 2007;123(3):384-90. doi: 10.1093/rpd/ncl159. Epub 2006 Oct 25.
7
Studying factors affecting the indoor gamma radiation dose using the MCNP5 simulation software.
J Environ Radioact. 2016 Dec;165:54-59. doi: 10.1016/j.jenvrad.2016.09.005. Epub 2016 Sep 11.
9
Calculation of the indoor gamma dose rate distribution due to building materials in the Netherlands.
Radiat Prot Dosimetry. 2008;132(4):381-9. doi: 10.1093/rpd/ncn309. Epub 2008 Dec 30.

本文引用的文献

1
Effects of stopping criterion on the growth of trees in regression random forests.
N Engl J Stat Data Sci. 2023 Apr;1(1):46-61. doi: 10.51387/22-nejsds5. Epub 2022 Aug 31.
2
Machine learning in environmental radon science.
Appl Radiat Isot. 2023 Apr;194:110684. doi: 10.1016/j.apradiso.2023.110684. Epub 2023 Jan 14.
3
Alternative stopping rules to limit tree expansion for random forest models.
Sci Rep. 2022 Sep 6;12(1):15113. doi: 10.1038/s41598-022-19281-7.
4
Gamma-radiation levels outdoors in Great Britain based on K, Th and U geochemical data.
J Environ Radioact. 2022 Oct;251-252:106948. doi: 10.1016/j.jenvrad.2022.106948. Epub 2022 Jun 25.
5
Measurements and determinants of children's exposure to background gamma radiation in Switzerland.
J Radiat Res. 2022 May 18;63(3):354-363. doi: 10.1093/jrr/rrac006.
6
External background ionizing radiation and childhood cancer: Update of a nationwide cohort analysis.
J Environ Radioact. 2021 Nov;238-239:106734. doi: 10.1016/j.jenvrad.2021.106734. Epub 2021 Sep 11.
7
Residential exposure to natural background radiation at birth and risk of childhood acute leukemia in France, 1990-2009.
J Environ Radioact. 2021 Jul;233:106613. doi: 10.1016/j.jenvrad.2021.106613. Epub 2021 Apr 22.
8
Bayesian spatial modelling of terrestrial radiation in Switzerland.
J Environ Radioact. 2021 Jul;233:106571. doi: 10.1016/j.jenvrad.2021.106571. Epub 2021 Mar 23.
9
ICRP Publication 147: Use of Dose Quantities in Radiological Protection.
Ann ICRP. 2021 Feb;50(1):9-82. doi: 10.1177/0146645320911864.
10
Mapping the geogenic radon potential for Germany by machine learning.
Sci Total Environ. 2021 Feb 1;754:142291. doi: 10.1016/j.scitotenv.2020.142291. Epub 2020 Sep 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验