Suppr超能文献

使用Simcyp模拟器对稳态分布容积的计算机预测方法进行跨物种评估。

A cross-species assessment of in silico prediction methods of steady-state volume of distribution using Simcyp simulators.

作者信息

Ning Miaoran, Fang Ma, Shah Kushal, Dixit Vaishali, Pade Devendra, Musther Helen, Neuhoff Sibylle

机构信息

Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.

Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals (Europe), 86-88 Jubilee Avenue, Milton Park, Abingdon, Oxfordshire OX14 4RW, United Kingdom; Quantitative Clinical Pharmacology, Takeda Pharmaceuticals International Inc., 35 Landsdowne st, Cambridge, MA 02139, USA.

出版信息

J Pharm Sci. 2025 Feb;114(2):1410-1422. doi: 10.1016/j.xphs.2024.12.018. Epub 2024 Dec 26.

Abstract

Predicting steady-state volume of distribution (V) is a key component of pharmacokinetic predictions and often guided using preclinical data. However, when bottom-up prediction from physiologically-based pharmacokinetic (PBPK) models and observed V misalign in preclinical species, or predicted V from different models varies significantly, no consensus exists for selecting models or preclinical species to improve the prediction. Through systematic analysis of V prediction across rat, dog, monkey, and human, using common methods, a practical strategy for predicting human V, with or without integration of preclinical PK information is warranted. In this analysis, we curated a dataset of 57 diverse compounds with measured physicochemical and protein binding data, together with observed V in these species. Using a bottom-up approach, prediction performance was consistent across species for each method. Although no method consistently outperformed others for all compound types and across species, M2 (Rodgers-Rowland method) performed marginally better for acids. Comparable compound-specific global tissue Kp scalars were needed to match observed V for both, human and preclinical species. Consequently, application of geometric mean values of preclinical Kp scalar to human V prediction improved accuracy. We propose a decision tree for human V prediction using PBPK methods with or without integrating preclinical PK information.

摘要

预测稳态分布容积(V)是药代动力学预测的关键组成部分,通常根据临床前数据进行指导。然而,当基于生理的药代动力学(PBPK)模型的自下而上预测与临床前物种中观察到的V不一致,或者不同模型预测的V差异显著时,在选择模型或临床前物种以改善预测方面不存在共识。通过使用常用方法对大鼠、狗、猴子和人类的V预测进行系统分析,有必要制定一种预测人类V的实用策略,无论是否整合临床前药代动力学信息。在本分析中,我们整理了一个包含57种不同化合物的数据集,这些化合物具有测量的物理化学和蛋白质结合数据,以及在这些物种中观察到的V。使用自下而上的方法,每种方法在不同物种间的预测性能是一致的。尽管没有一种方法在所有化合物类型和所有物种中都始终优于其他方法,但M2(罗杰斯-罗兰方法)对酸的预测性能略好。对于人类和临床前物种,都需要可比的化合物特异性全局组织Kp标量来匹配观察到的V。因此,将临床前Kp标量的几何平均值应用于人类V预测可提高准确性。我们提出了一种使用PBPK方法预测人类V的决策树,无论是否整合临床前药代动力学信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验