文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在健康筛查人群中使用层次聚类研究评估代谢前期代谢综合征的危险因素。

Risk factors for metabolic syndrome in the premetabolic state assessed using hierarchical clustering study in a health screening group.

作者信息

Park Se-Jun, Kim Yu Na, Oh Byeong Kil, Kang Jeonggyu

机构信息

Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.

Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.

出版信息

Sci Rep. 2024 Dec 28;14(1):31169. doi: 10.1038/s41598-024-82513-5.


DOI:10.1038/s41598-024-82513-5
PMID:39732771
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11682037/
Abstract

Early detection of a premetabolic status that is at risk for metabolic syndrome (MetS) but not meeting the criteria is crucial. This study examined 27,623 participants aged 20-50 (mean: 40.7) years who underwent initial health screening at Kangbuk Samsung Hospital (2011-2019), focusing on individuals with one or two MetS components. Hierarchical agglomerative clustering was used to form MetS risk clusters based on initial and follow-up data, including age, resting heart rate (rHR), serum uric acid (UA), C-reactive protein (CRP), gamma-glutamyl transpeptidase, and ferritin levels, and nonalcoholic fatty liver disease (NAFLD), periodontal disease, and Helicobacter pylori infection duration. Kaplan-Meier and generalized additive models were used to present the restricted mean survival time (RMST) and identify onset contributors. Clusters with NAFLD and elevated UA levels had the highest MetS risk, whereas those with uniformly low biomarker levels revealed the lowest risk. During follow-up, a cluster initially comprising 60.2% moderate-risk patients exhibited high biomarker levels and had the worst MetS prognosis (RMST: 211 days). UA, CRP levels, and rHR contributed to the incidence of MetS in the fitted model. Machine learning can predict the premetabolic state at MetS risk in a population-based cohort.

摘要

早期发现处于代谢综合征(MetS)风险但未达标准的代谢前状态至关重要。本研究对27623名年龄在20 - 50岁(平均40.7岁)之间、在江北三星医院(2011 - 2019年)接受首次健康筛查的参与者进行了检查,重点关注有一或两个MetS组分的个体。基于初始和随访数据,包括年龄、静息心率(rHR)、血清尿酸(UA)、C反应蛋白(CRP)、γ-谷氨酰转肽酶和铁蛋白水平,以及非酒精性脂肪性肝病(NAFLD)、牙周病和幽门螺杆菌感染持续时间,采用层次凝聚聚类法形成MetS风险簇。使用Kaplan-Meier法和广义相加模型来呈现受限平均生存时间(RMST)并确定发病的影响因素。患有NAFLD且UA水平升高的簇具有最高的MetS风险,而生物标志物水平均一较低的簇风险最低。在随访期间,一个最初由60.2%中度风险患者组成的簇呈现出高生物标志物水平且MetS预后最差(RMST:211天)。在拟合模型中,UA、CRP水平和rHR对MetS的发病有影响。机器学习可以在基于人群的队列中预测处于MetS风险的代谢前状态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c31c/11682037/5f918b702422/41598_2024_82513_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c31c/11682037/98cd359691b7/41598_2024_82513_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c31c/11682037/5f918b702422/41598_2024_82513_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c31c/11682037/98cd359691b7/41598_2024_82513_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c31c/11682037/5f918b702422/41598_2024_82513_Fig2_HTML.jpg

相似文献

[1]
Risk factors for metabolic syndrome in the premetabolic state assessed using hierarchical clustering study in a health screening group.

Sci Rep. 2024-12-28

[2]
The crucial role of hypertension in determining latent classes of metabolic syndrome in northern Iran and predictive power of these classes in non-alcoholic fatty liver: a gender-based insight.

Front Endocrinol (Lausanne). 2025-2-28

[3]
Joint association of METS-IR and uric acid with stoke, mediated by C-reactive protein.

Front Endocrinol (Lausanne). 2024-11-20

[4]
How Clinically Relevant Is C-Reactive Protein for Blacks with Metabolic Syndrome to Predict Microalbuminuria?

Metab Syndr Relat Disord. 2021-2

[5]
Association of epicardial fat volume and nonalcoholic fatty liver disease with metabolic syndrome: From the CAESAR study.

J Clin Lipidol. 2016

[6]
Serum Uric Acid in Roma and Non-Roma-Its Correlation with Metabolic Syndrome and Other Variables.

Int J Environ Res Public Health. 2018-7-4

[7]
Combined effect of obesity and uric acid on nonalcoholic fatty liver disease and hypertriglyceridemia.

Medicine (Baltimore). 2017-3

[8]
Serum uric acid is an independent predictor of metabolic syndrome in a Japanese health screening population.

Heart Vessels. 2014-7

[9]
The Role of Uric Acid for Predicting Future Metabolic Syndrome and Type 2 Diabetes in Older People.

J Nutr Health Aging. 2017

[10]
Metabolic syndrome and biochemical changes among non-alcoholic fatty liver disease patients attending a tertiary care hospital of Nepal.

BMC Gastroenterol. 2018-7-6

引用本文的文献

[1]
Machine learning for prediction of infection based on basic health examination data in adults: a retrospective study.

Front Med (Lausanne). 2025-6-13

本文引用的文献

[1]
C-Reactive Protein as a Marker of Inflammation in Children and Adolescents with Metabolic Syndrome: A Systematic Review and Meta-Analysis.

Biomedicines. 2023-11-2

[2]
Precision medicine for cardiometabolic disease: a framework for clinical translation.

Lancet Diabetes Endocrinol. 2023-11

[3]
Association between Climate Factors and Dengue Fever in Asuncion, Paraguay: A Generalized Additive Model.

Int J Environ Res Public Health. 2022-9-26

[4]
Generalized additive models to analyze nonlinear trends in biomedical longitudinal data using R: Beyond repeated measures ANOVA and linear mixed models.

Stat Med. 2022-9-20

[5]
Early identification of metabolic syndrome risk: A review of reviews and proposal for defining pre-metabolic syndrome status.

Nutr Metab Cardiovasc Dis. 2021-8-26

[6]
Metabolic Syndrome Severity Score for Predicting Cardiovascular Events: A Nationwide Population-Based Study from Korea.

Diabetes Metab J. 2021-7

[7]
Clinical characterization of data-driven diabetes subgroups in Mexicans using a reproducible machine learning approach.

BMJ Open Diabetes Res Care. 2020-7

[8]
Modeling perinatal mortality in twins via generalized additive mixed models: a comparison of estimation approaches.

BMC Med Res Methodol. 2019-11-15

[9]
Using the Restricted Mean Survival Time Difference as an Alternative to the Hazard Ratio for Analyzing Clinical Cardiovascular Studies.

Circulation. 2019-10-22

[10]
Metabolically healthy obesity: facts and fantasies.

J Clin Invest. 2019-10-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索