文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于成人基本健康检查数据的机器学习预测感染:一项回顾性研究。

Machine learning for prediction of infection based on basic health examination data in adults: a retrospective study.

作者信息

Wang Qiaoli, Liang Tao, Li Yuexi, Zhou Peng, Liu Xiaoqin

机构信息

Health Management Center, Deyang People's Hospital, Deyang, Sichuan, China.

Department of Gastroenterology, Deyang People's Hospital, Deyang, Sichuan, China.

出版信息

Front Med (Lausanne). 2025 Jun 13;12:1587540. doi: 10.3389/fmed.2025.1587540. eCollection 2025.


DOI:10.3389/fmed.2025.1587540
PMID:40584706
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12202361/
Abstract

OBJECTIVE: This study aimed to investigate the feasibility of developing machine learning models for non-invasive prediction of () infection using routinely collected adult health screening data, including demographic characteristics and clinical biomarkers, to establish a potential decision-support tool for clinical practice. METHODS: The data was sourced from the adult health examination records within the health management centers of the hospital. The Least Absolute Shrinkage and Selection Operator (LASSO) regression was employed for feature selection. Six distinct machine learning algorithms were utilized to construct the predictive models, and their performance was comprehensively evaluated. Additionally, the SHapley Additive Projection (SHAP) method was adopted to visualize the model features and the prediction results of individual cases. RESULTS: A total of 10,393 subjects were included in the dataset, with 3,278 (31.54%) having infection. After feature screening, 10 factors were selected for the prediction model. Among six machine-learning models, the Extra Trees model had the best performance, with an AUC of 0.827, Accuracy of 0.744, and Recall of 0.736. The Random Forest model also did well, with an AUC of 0.810. XGBoost attained an AUC of 0.801, indicating moderate predictive capability. SHAP analysis showed that age, WBC, ALB, gender, and wasit were the top five factors affecting infection. Higher age, WBC, wasit and lower ALB were linked to a higher infection probability. These results offer insights into infection risk factors and model performance. CONCLUSION: The Extra Trees classifier exhibited the optimal performance in predicting infections among the evaluated models. Additionally, the SHAP analysis enhanced the interpretability of the model, which offers valuable insights for early-stage clinical prediction and intervention strategies.

摘要

目的:本研究旨在探讨利用常规收集的成人健康筛查数据(包括人口统计学特征和临床生物标志物)开发机器学习模型用于无创预测()感染的可行性,以建立一种潜在的临床实践决策支持工具。 方法:数据来源于医院健康管理中心的成人健康检查记录。采用最小绝对收缩和选择算子(LASSO)回归进行特征选择。使用六种不同的机器学习算法构建预测模型,并对其性能进行综合评估。此外,采用SHapley加法投影(SHAP)方法可视化模型特征和个体病例的预测结果。 结果:数据集中共纳入10393名受试者,其中3278名(31.54%)发生()感染。经过特征筛选,为预测模型选择了10个因素。在六个机器学习模型中,极端随机树模型性能最佳,曲线下面积(AUC)为0.827,准确率为0.744,召回率为0.736。随机森林模型也表现良好,AUC为0.810。XGBoost的AUC为0.801,表明具有中等预测能力。SHAP分析显示,年龄、白细胞、白蛋白、性别和腰围是影响()感染的前五个因素。年龄越大、白细胞越高、腰围越大以及白蛋白越低与感染概率越高相关。这些结果为()感染危险因素和模型性能提供了见解。 结论:在评估的模型中,极端随机树分类器在预测()感染方面表现出最佳性能。此外,SHAP分析增强了模型的可解释性,为早期临床预测和干预策略提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf6/12202361/e6155a1e6079/fmed-12-1587540-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf6/12202361/176389fe398b/fmed-12-1587540-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf6/12202361/c0885fa76a60/fmed-12-1587540-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf6/12202361/088701621b66/fmed-12-1587540-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf6/12202361/be88cc9f644d/fmed-12-1587540-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf6/12202361/adbb653df8b4/fmed-12-1587540-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf6/12202361/e4592e186c8c/fmed-12-1587540-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf6/12202361/5a2ac18a583f/fmed-12-1587540-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf6/12202361/ea2e1b4714a1/fmed-12-1587540-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf6/12202361/e6155a1e6079/fmed-12-1587540-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf6/12202361/176389fe398b/fmed-12-1587540-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf6/12202361/c0885fa76a60/fmed-12-1587540-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf6/12202361/088701621b66/fmed-12-1587540-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf6/12202361/be88cc9f644d/fmed-12-1587540-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf6/12202361/adbb653df8b4/fmed-12-1587540-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf6/12202361/e4592e186c8c/fmed-12-1587540-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf6/12202361/5a2ac18a583f/fmed-12-1587540-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf6/12202361/ea2e1b4714a1/fmed-12-1587540-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf6/12202361/e6155a1e6079/fmed-12-1587540-g009.jpg

相似文献

[1]
Machine learning for prediction of infection based on basic health examination data in adults: a retrospective study.

Front Med (Lausanne). 2025-6-13

[2]
Construction and validation of HBV-ACLF bacterial infection diagnosis model based on machine learning.

BMC Infect Dis. 2025-7-1

[3]
Supervised Machine Learning Models for Predicting Sepsis-Associated Liver Injury in Patients With Sepsis: Development and Validation Study Based on a Multicenter Cohort Study.

J Med Internet Res. 2025-5-26

[4]
Non-invasive diagnostic tests for Helicobacter pylori infection.

Cochrane Database Syst Rev. 2018-3-15

[5]
Sequential versus standard triple first-line therapy for Helicobacter pylori eradication.

Cochrane Database Syst Rev. 2016-6-28

[6]
Advanced Prediction of Heart Failure Risk in Elderly Diabetic and Hypertensive Patients Using Nine Machine Learning Models and Novel Composite Indices: Insights from NHANES 2003-2016.

Eur J Prev Cardiol. 2025-2-27

[7]
Development of machine learning model for predicting prolonged operation time in lumbar stenosis undergoing posterior lumbar interbody fusion: a multicenter study.

Spine J. 2025-3

[8]
Interpretable machine learning for predicting isolated basal septal hypertrophy.

PLoS One. 2025-6-30

[9]
Assessing individual genetic susceptibility to metabolic syndrome: interpretable machine learning method.

Ann Med. 2025-12

[10]
Prediction of Insulin Resistance in Nondiabetic Population Using LightGBM and Cohort Validation of Its Clinical Value: Cross-Sectional and Retrospective Cohort Study.

JMIR Med Inform. 2025-6-13

本文引用的文献

[1]
Risk factors associated with Helicobacter pylori infection in the urban population of China: A nationwide, multi-center, cross-sectional study.

Int J Infect Dis. 2025-5

[2]
Advancing Alzheimer's disease risk prediction: development and validation of a machine learning-based preclinical screening model in a cross-sectional study.

BMJ Open. 2025-2-8

[3]
Improving stroke risk prediction by integrating XGBoost, optimized principal component analysis, and explainable artificial intelligence.

BMC Med Inform Decis Mak. 2025-2-7

[4]
Helicobacter pylori and gastric cancer: mechanisms and new perspectives.

J Hematol Oncol. 2025-1-23

[5]
Risk factors for metabolic syndrome in the premetabolic state assessed using hierarchical clustering study in a health screening group.

Sci Rep. 2024-12-28

[6]
Pathogenicity and virulence of : A paradigm of chronic infection.

Virulence. 2025-12

[7]
Dietary patterns and Helicobacter pylori infection: Insights and future research.

Asian J Surg. 2024-11-28

[8]
Prevalence of infection in China from 2014-2023: A systematic review and meta-analysis.

World J Gastroenterol. 2024-11-21

[9]
Association of infection and white blood cell count: a cross-sectional study.

BMJ Open. 2024-11-2

[10]
Data-driven rapid detection of infection through machine learning with limited laboratory parameters in Chinese primary clinics.

Heliyon. 2024-8-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索